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Course Material 

Real Analysis 

I M.Sc., Mathematics 

UNIT I 

Continuity and compactness 
A mapping f of a set E in Rk is said to be bounded if there is a real number M such the 

f (x) M  for all x E . 

Theorem 1.1.8: 

 Suppose f is a continuous mapping of a compact metric spaces X into a metric space Y. 

Then f(X) is compact. 

Proof: 

 Let  V be an open cover of f(X). 

Since f is continuous, 

Theorem 1.1.5, shows that each of the sets ( )1f V−

 is open. 

Since X is compact, 

There are finitely many indices, say 1 n,...,  such that ( ) ( )1 1

1 nX f V ... f V− −

    ----------(1) 

Since 
1f (f (E)) E−  for every E Y , (1) implies that  

1 nf (X) V .... V       ----------(2) 

Hence proved. 

 

Theorem 1.1.9: 

If f is a continuous mapping of a compact metric space X into Rk, then f(X) is closed and 

bounded. Thus f is bounded. 

Theorem 1.1.10: 

 Suppose f is a continuous real function on a compact metric space D,and  

p X

M supf (p)


=  ,  
p X

m inf f (p)


=    ---------(1) 

Then there exist points p,q X such that f(p)=M and f(q)=m. 

Here M – the least upper bound of the set of all numbers f(p), where p ranges over X. 

 m-the greatest lower bound of this set of numbes. 

Conclusion: 

There exist points p and q in X such that f (q) f (x) f (p)   for all x X ;  

(i.e.,) f attains its maximum (at p) and its minimum (at q). 

Proof: 

By theorem 1.1.9, 

 f(X) is closed and bounded set of real numbers; 
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here f(X)  contains 

 M=sup f(X)   and     m = inf f(X). 

[ by previous theorems, Let E be a nonempty set of real numbers which is bounded above 

.Let y= sup E. 

Then y E . 

Hence y E  if E is closed.] 

Theorem 1.1.11: 

Suppose f is continuous 1-1 mapping of a compact metric space X onto a metric space Y. 

Then the inverse mapping 1f − defined on Y by 

  
1f (f (x)) x,     x X− =   

is continuous mapping on Y onto X. 

Proof:  

 Applying theorem 1.1.5 to 1f − in place of f, it suffices to prove that f(V) is an 

open set in Y for every open set V in X. 

Fix such a set V. 

The complement Vc of V is closed in X, 

Hence compact. [ since closed subsets of compact sets are compact] 

Hence 
cf (V )  is a compact subset of Y.  [ since theorem 1.1.8] 

So is closed in Y. [ since compact subsets of metric spaces are closed] 

Since f is 1-1 and onto, 

f (V)  is the complement of 
cf (V ) . 

Hence f(V) is open. 

Uniformly Continuous 

 Let f be a mapping of a metric space X into a metric space Y. we say that f is 

uniformly continuous on X if for every 0 there exists 0  such that 

 ( )Yd f (p),f (q)  

For all p and q in X for which ( )Xd p,q    

Differences between continuity and uniform continuity 

Uniform continuity is a property of a function on a set, whereas continuity can be defined 

at a single point. 

A given function is uniform continuous at a certain point is meaningless. 

If f is continuous on X, then it is possible to find, for each 0  and for each point p of 

X, a number 0  having the property specified in the definition of continuous functions. This 

depends on and on p. 

If f is however, uniformly continuous on X, then it is possible, for each 0  to find one 

number 0   which will do for all points p of X. 

Every uniformly continuous function is continuous. 
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Theorem 1.1.12: 

Let  f be a continuous mapping of a compact metric space X into a metric space Y. Then f 

is uniformly continuous on X. 

Proof: 

Let 0  be given. 

Since f is continuous, 

We can associate to each point p X  a positive number (p)  such that 

 q X , ( )Xd p,q (p)   

  ( )Yd f(p), f(q)
2


      --------(1) 

Let J(p) be the set of all q X  for which  

 ( )X

1
d p,q (p)

2
        ---------(2) 

Since p J(p) , the collection of all sets J(p) is an open cover of X; 

Since X is compact, there is a finite set of points 1 np ,...., p in X, such that  

 1 nX J(p ) ... J(p )     --------(3) 

We put  1 n

1
min (p ),...., (p )

2
 =      ______(4) 

Then 0   

Now let q and p be points of X, 

Such that  

( )Xd p,q    

By (3), there is an integer m, 1 m n  , 

Such that mp J(p ) ; 

Hence ( )X m m

1
d p,p (p )

2
    -------(5) 

And we have, 

( ) ( ) ( )X m X X m m m

1
d q,p d p,q d p,p (p ) (p )

2
 +  +     

Finally, (1) shows that 

( ) ( ) ( )Y Y m Y md f(p),f(q) d f(p),f(p ) d f(q),f(p ) +  

This completes the proof. 

Theorem 1.1.13: 

Let E be a non-compact set in R1. Then  

(a) There exists a continuous function on E which is not bounded. 

(b) There exists a continuous and bounded function on E which has no maximum. 

If, in addition, E is bounded, then 

(c) There exists a continuous function of E which is not uniformly continuous. 
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Proof: 

Suppose first that E is bounded, 

So that there exists a limit point x0 of E which is not a point of E. 

Consider 
0

1
f (x) ,   x E

x x
= 

−
 --------(1) 

This is continuous on E (theorem 1.1.6), but evidently unbounded. 

To see that (1) is not uniformly continous, 

Let 0  and 0   be arbitrary, and 

Choose a point x E  such that 0x x−   . 

Taking t close enough to x0, 

We can then make the difference f (t) f (x)−  greater than ,  

although t x−   , 

since this is true for every 0  , 

f is not uniformly continuous on E. 

The function g given by 
( )

2

0

1
g(x) ,  x E

1 x x
= 

+ −
 --------(2) 

Is continuous on E, and is bounded, since 0 g(x) 1  . 

It is clear that 
x E

sup  g(x) 1,


=  

Whereas g(x)<1 for all x E . 

Thus g has no maximum on E. 

Having proved the theorem for bounded sets E, 

Let us now suppose that E is bounded, 

Then f(x)=x establishes (a), 

Whereas 
2

2

x
h(x) , x E

1 x
= 

+
  -------(3) 

Establishes (b), since  

 
x E

sup  h(x) 1,


=  

And h(x)<1 for all x E . 

Assertion (c) would be false if boundedness were omitted from the hypotheses. 

For, let E be the set of all integers. 

Then every function defined on E is uniformly continuous on E. 

To see this, 

We need merely take 1  in definition uniformly continuous. 

We prove this section by showing that compactness is also essential in theorem 1.1.11. 

Example: 

Let X be the half-open interval [0,2 ) on the real line, and let f be the mapping of  X onto 

the circle Y consisting of all points whose distance from the origin is 1, given by 
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 f (t) (cos t,sin t),   0 t 2=      -------(1) 

The continuity of the trigonometric functions cosine and sine and their periodicity 

properties, f is a continuous 1-1 mapping of X onto Y. 

However, the inverse mapping fails to be continuous at the point (1, 0)=f(0). 

X is not compact in this example. 

 

Continuity and connectedness 

Theorem 1.1.14: 

If f is a continuous mapping of a metric space X into a metric space Y, and if E is a 

connected subset of X, then f(E) is connected. 

Proof: 

Let us assume, on the contrary, 

That f (E) A B=  , 

Where A and B are nonempty separated subsets of Y. 

Put 
1G E f (A)−=  , 

       
1H E f (B)−=  . 

Then E G H=  , and neither G nor H is empty. 

Since A A  ( the closure of  A), 

We have 1G f (A)− ; 

The latter set is closed, since f is continuous; 
1G f (A)−  

It follows that f (G) A . 

Since f(H)=B and A B is empty, 

G H  is empty. 

The same argument show that G H  is empty. 

Thus G and H are separated. 

This is impossible if E is connected. 

Theorem 1.1.15: 

Let f be a continuous real function on the interval [a,b]. If f(a) < f(b) and if c is a 

number such that f(a)<c<f(b), then there exists a point x (a,b) such that f(x)=c. 

Definition and Existence of the integral 

Let [a, b] be a given interval, 

By a partition P of [a, b] we mean a finite set of points 0 1 nx , x ,..., x , where 

0 1 n 1 na x x ... x x b−=     =  
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we write 

 i i i 1x x x  ,  i=1,2,...,n− = −  

Suppose f is a bounded real function defined on [a, b]. 

Corresponding to each partition P of [a, b] 

We put 

 i i 1 iM sup  f(x),  x x x−=    

 i i 1 im inf  f(x),  x x x−=    

 
n

i i

i 1

U(P,f ) M x
=

=   

 
n

i i

i 1

L(P, f ) m x
=

=   

And 
b

a

fdx inf  U(P,f)=  ----------(1) 

b

a

fdx sup  L(P,f)=  ----------(2) 

Where the inf and the sup are taken over all partitions P of [a, b]. 

The left members of (1) & (2) are called the upper and lower Riemann integrals of f over 

[a, b] respy. 

If the upper and lower integrals are equal, we say that f is Riemann-integrable on [a, b], 

We write  f  (  denotes the set of Riemann-integrable functions) 

We denotes the common value of (1) and (2) by 

 

b

a

f  dx    ---------(3) (or) 

b

a

f (x) dx    ------(4) 

This is the Riemann integral of f over [a, b]. 
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Since f is bounded, there exist two numbers, m and M such that 

  m f (x) M,  a x b.     

Hence for every P, 

  m(b a) L(P,f) U(P,f ) M(b a)−    −  

So that the numbers L(P, f)  and U(P, f) form a bounded set. 

This shows that the upper and lower integral are defined for every bounded function f. 

Definition  

Let  α be a monotonically increasing function on [a, b]. [since α(a) and α(b) are finite, it follows 

that α is bounded on [a, b] ] 

Corresponding to each partition of P of [a, b], 

 i i i 1x )( (x )−−  =  

 i 0   

For any real function  f  which is  bounded on [a, b]. 

Corresponding to each partition P of [a, b] 

We put 

 
n

i i

i 1

U(P,f , ) M
=

=   , 

 
n

i i

i 1

L(P,f , ) m
=

=    

And we define  
b

a

fd inf  U(P,f, ) =  ----------(5) 

b

a

fd sup  L(P,f, ) =  ----------(6) 

The left members of (5) & (6) are equal, 
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b

a

f  d    ---------(7) (or)   

b

a

f (x) d (x)    ------(8) 

 

 we say that f is Riemann-Stieltjes integral of f with respect to  ,over [a, b], 

If (5) & (6) are equal we say that f is integrable w.r.t.  , in the Riemann sense, f ( )   

Partition:  

The partition P* is called as a refinement of P if P* P . Given two partitions, P1 and P2, 

we say that P* is their common refinement if 1 2P* P P=   

Theorem 1.2.1.: 

If P* is a refinement of P, 

L(P,f , ) L(P*, f , )    ---------(1) 

And   U(P*,f , ) U(P, f, )  ----------(2) 

Proof: 

To prove (1), suppose first that P* contains one point more than P. 

Let this extra point be x*, 

And suppose  i 1 ix x* x−   , 

Where xi-1 and xi are two consecutive points of P, 

 Put w1= inf f(x) ,  i 1x x x*−    

      W2=inf f(x),  ix* x x   

Clearly 1 i 2 iw m  and w m  , 

Hence  

     1 i 1 2 i i i i 1L(P*,f , ) L(P,f, ) w (x*) (x ) w (x ) (x*) m (x ) (x )− − −  =  − +  − −  −  

      1 i i 1 2 i i(w m ) (x*) (x ) (w m ) (x ) (x*) 0−= −  − + −  −   
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If P*contains k points more than P, we repeat this reasoning k times, and arrive at (1). The proof 

of (2) is analogous. 

Theorem 1.2.2: 

b b

a a

fd fd      

Proof: 

Let P* be the common refinement of two partitions P1 and P2. 

By previous theorem, 

1 2L(P ,f , ) L(P*,f , ) U(P*,f , ) U(P ,f, )      

Hence    1 2L(P ,f , ) U(P ,f, )  --------(1) 

If P2 is fixed and the sup is taken over all P1, 

(1) Gives 2f  d U(p ,f , )
−

          -----------(2) 

The theorem follows by taking the inf over all P2 in (2). 

Theorem 1.2.3: 

f ( )   on [a, b] if and only if for every ε>0 there exists a partition P such that  

 U(P,f , ) L(P, f, ) −        ----------(1) 

Proof: 

For every P we have 

  L(P,f , ) f  d f  d U(P,f, )

−

−

         

Thus (1) implies f  d f  d

−

−

−      

Hence if (1) can be satisfied for every 0  , 

We have f  d f  d

−

−

 =   , that is f ( )  . 
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Conversely, 

Suppose f ( )  , 

And let 0  be given. 

Then there exist partitions P1 and P2 such that  

  
2U(P ,f, ) f  d

2
 −    ------(2)  

  
1f  d L(P ,f, )

2
 −    ------(3) 

We choose P to be the common refinement of P1 and P2. 

Then theorem 1.2.1, together with (2) & (3) shows that  

 
2 1U(P,f , ) U(P ,f, ) f  d L(P ,f , ) L(P,f, )

2
    +   +      

So that (1) holds for this partition P. 

Theorem 1.2.4: 

If  f is monotonic on [a, b], and if α is continuous on [a, b], then f ( )  . 

Proof:  

let 0  be given. 

For  any positive integer n, choose a partition such that 
i

(b) (a)
,  i=1,2,...,n.

n

 −
 =  

This is possible since α is continuous . [ Theorem 1.1.15] 

We suppose that f is monotonically increasing. 

Thus i i i iM f (x ),  m f (x 1),  i=1,2,...,n= = −  

So that 

 
n

i i 1

i 1

(b) (a)
U(P, f , ) L(P, f , ) f (x ) f (x )

n
−

=

 −
 −  = −  

(b) (a)
[f(b) f(a)]

n

 −
= −    
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If n is taken enough. 

By theorem 1.2.3, f ( )  . 

Theorem 1.2.5: 

If f is continuous on [a, b] then f ( )  on [a, b]. 

Proof: 

let 0  be given. 

Choose 0   so that 

   (b) (a) −   . 

Since f is uniformly continuous on [a, b]    [theorem 1.1.12] 

There exists a 0   such that  

 f (x) f (t)−   ------(1) 

If  x [a,b],  t [a,b], and x t  −   ,  

If  P is any partition on [a, b] such that ix   for all i, then (1) implies that 

 i iM m ,  (i-1, ...,n)−    

And therefore, 

  ( )
n

i i i

i 1

U(P,f, ) L(P, f, ) M m
=

 −  = −   

     
n

i

i 1

(b) (a)
=

   =   −    

By theorem 1.2.3, f ( )  . 

Theorem 1.2.6: 

Suppose f is bounded on [a, b], f has only finitely many points of discontinuity on [a, b], and α 

is continuous at every point at which f is discontinuous. Then f ( )  . 

Proof: 
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let 0  be given, 

put M sup  f (x)= , 

Let E be the set of points at which f is discontinuous. 

Since E is finite and α is continuous at every point of E, 

We can cover E by finitely many disjoint intervals j ju , v [a,b]     such that the sum of the 

corresponding differences j j(v ) (u ) − is less that ε. 

 We can place these intervals in such a way that every point of ( )E a,b lies in the 

interior of  some j ju , v   . 

Remove the segments ( )j ju , v from [a, b]. 

The remaining set K is compact. 

Hence f is uniformly continuous on K, and there exists δ>0  such that  

 f (s) f(t)  if   s K,  t K,   s t−     −   . 

Now from a partition  0 1 nP x ,x ,..., x=  of  [a, b], 

Each uj occurs in P, Each vj occurs in P. 

No point of any segment ( )j ju , v occurs in P. 

If xi-1 is not one of the uj, then ix   . 

 Note that i iM m 2M−   for every i, and that i iM m−   unless xi-1  is one of the uj. 

Hence as in the proof of theorem 1.2.5, 

 U(P,f, ) L(P,f, ) (b) (a) 2M −    − +   

Since ε is arbitrary, 

Theorem 1.2.3, shows that f ( )  . 

Theorem 1.2.7: 
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Suppose  f ( )   on [a, b], m f M  , φ is continuous on [m, M], and h(x)= φf(x) on [a, b]. 

Then f ( )   on [a, b].  

Proof: 

Choose ε>0, 

Since φ is uniformly continuous on [m, M], 

There exists δ>0 such that δ<ε and (s) (t)   if  s t −   −    and  s, t m,M . 

Since f ( )  , 

There is a partition  0 1 nP x ,x ,..., x=  of  [a, b], 

Such that 
2U(P,f, ) L(P,f, ) −      ----------------(1)

  

Let Mi, mi have the same meaning in the definition. 

Let Mi*, mi* be the analogous numbers for h. 

Divide the numbers 1,2,…,n into two classes: 

i i i ii A  if   M m ,  i B  if   M m −    −    

For  i A ,  out choice of δ shows that  

  i iM * m *−   , 

For i B , i iM * m * 2k−  , 

Where k sup (t) ,  m t M=    , 

By (1), we have 

 
2

i i i i

i B i B

(M m )
 

   −       ------------(2) 

So that i

i B

    

It follows that  

 ( ) ( )i i i i i i

i A i B

U(P,h, ) L(P,h, ) M * m * M * m *
= =

 −  = −  + −    
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       (b) (a) 2k (b) (a) 2k   − +     − +  

Since ε was arbitrary. 

Theorem 1.2.3 implies that h ( )   

Properties of the Integral 

(a) If 1f ( )  and 2f ( )  on [a, b], then 1 2f f ( )+   , 

b b b

1 2 1 2

a a a

(f f )d f d f d+  = +     

If cf ( )   

Then 

b b

a a

cfd c fd =  
 

(b) If 1 2f (x) f (x) on [a, b], then  

b b

1 2

a a

f d f d   
 

 

(c) If f ( )  on [a, b] and a<c<b, then f ( )  on [a, c] and on [c, b], 

and  

c b b

a c a

fd fd fd+  =   
 

(d) If f ( )  on [a, b] and if f (x) M  on [a, b] then 

 
b

a

fd M (b) (a)   −  

 

(e)  If 1f ( )  and  2f ( )  , then 1 2f ( )  + , and 

b b b

1 2 1 2 2

a a a

f d( ) fd f d + =  +   
 

 

If f ( )  and c is a positive constant, then 

b b

a a

f d(c ) c fd =  
 

Theorem 1.2.8:  
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If f ( )  and g ( )   on [a, b], 

Then (a) fg ( )   

         (b) f ( )   and 

b b

a a

f d f d     

 Proof: 

 If  we take 
2(t) t = , 

Theorem 1.2.7, shows that 
2f ( )   if f ( )  . 

The identity 

 
2 24fg (f g) (f g)= + − −  

Completes the proof of (a). 

If we take (t) t = , 

Theorem 1.2.7. shows that f ( )  . 

Choose c 1=  , so that 

 

b b b b

a a a a

f d c fd cfd f d =  =      
 

Since cf f  

Unit Step function: 

 The unit step function I is defined by 
0, x 0

I(x)
1, x 0


= 


. 

 

 

Theorem 1.2.9: 

If a<s<b, f is bounded on[a, b], f is continuous at s, and (x) I(x s) = − then, 
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b

a

f d f (s) =
 

Proof: 

Consider partitions  0 1 2 3P x ,x ,x ,x= , 

Where x0=a and x1=s<x2<x3=b. 

Then U(P,f,α)=M2, L(P,f,α)=m2, 

Since f is continuous at s, we see that M2 and m2 converge to f(s) as 2x s→ . 

Theorem 1.2.10: 

Suppose  nC 0 for 1,2,3,…., nC converges, {sn}is a sequence of distinct points in (a, b), and  

 n n

n 1

(x) C I(x s )


=

 = −     ----------(1) 

Let f be continuous on [a, b], then 

 

b

n n

n 1a

f d C f (s )


=

 =
-------------(2) 

Proof: 

The comparison test shows that the series (1) converges for every x. 

Its sum α(x) is evidently monotonic, and  α(a)=0, ( ) Cb n =  

Let ε>0 be given, and choose N so that n

N 1

C


+

   

Put  

 
N

1 n n 2 n n

n 1 N 1

(x) C I(x s ),  (x) C I(x s )


= +

 = −  = −   

By properties of integral and theorem 1.2.9, 

 

b N

1 n n

n 1a

f d C f (s )
=

 =
   -------(3) 



 

Dr. A.Dhanalakshmi, Asst. Prof. of Mathematics, SCSVMV. Page 17 
 

Since α2(b)- α2(a)<ε, 

b

2

a

f d M  
----------(4) 

Where M=sup |f(x)|. 

Since α= α1+ α2, 

It follows from (3) & (4), 

b N

n n

n 1a

f d C f (s ) M
=

 −  
 

If we let N→ , we obtain (2). 

Theorem 1.2.11: 

Assume α increases monotonically and '  on [a, b]. Let f be a bounded real function on [a, 

b]. 

Then f ( )   iff  'f   

In that case 

b b

'

a a

f d f(x) (x)dx =  
 

Theorem 1.2.12: 

Suppose  is a strictly increasing continuous function that maps an interval  [A, B] on [a, b]. 

suppose α is monotonically increasing on [a, b] and f ( )   on [a, b]. 

Define β and g on [A, B] by 

 (y) ( (y)), =        g(y) f ( (y))=    --------- (1) 

Then   g ( )   and 

 

B b

A a

g d f  d =     -------------(2) 

Proof:  



 

Dr. A.Dhanalakshmi, Asst. Prof. of Mathematics, SCSVMV. Page 18 
 

 To each partition  0 nP x ,..., x=  of [a, b] corresponds a partition  0 nQ y ,..., y=  of [A, 

B], 

So that i ix (y )=  . 

All partitions of [A, B] are obtained in this way. 

Since the values taken by f on [xi-1, xi] are exactly the same as those taken by  g on [yi-1, yi], 

We see that 

 U(Q,g, ) U(P,f, ),  L(Q,g, ) L(P,f, ) =   =     --------(3) 

Since f ( )  ,  P can be choosen so that both U(P,f, ) and L(P, f, )   are close to f  d . 

Hence (3), combined with theorem 1.2.3, shows that g ( )   and that (2) holds. 

This completes the proof. 

 

Integration and Differentiation: 

Theorem 1.2.13: 

 Let  f ( )   on [a, b]. 

For a x b  ,  

Put 

x

a

F(x) f (t) dt=  . 

Then F is continuous on [a, b]; 

Furthermore, if f is continuous at a point x0 of [a, b], then F is differentiable at x0, 

And 
'

0 0F (x ) f(x )=  

Proof: 

 Since f  , f is bounded. 

Suppose f (t) M  for  a t b   . 
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If a x y b    then, 

y

x

F(y) F(x) f (t)dt M(y x)− =  − , 

By the properties of the integral, 

Given ε>0, 

We see that F(y) F(x)−   , 

Provided that y x / M−   . 

This proves continuity of F. 

Now suppose f is continuous at x0. 

Given ε>0, choose δ>0 such that  

0f(t) f (x )−    

If 0t x ,  and  a t b−     . 

Hence if  

 0 0 0x s x t x   and  a s<t b−     +   , 

By the properties of the integral (d), 

  
t

0 0

s

F(t) F(s) 1
f (x ) f (u) f (x ) dx

t s t s

−
− = −  

− −   

It follows that '

0 0F (x ) f (x )= . 

Theorem 1.2.14: The Fundamental theorem of calculus 

If  f   on [a, b] and if there is a differentiable function F on [a, b] such that  'F f= , then 

 

b

a

f (x) dx F(b) F(a)= − . 

Proof: 
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Let  ε>0 be given. 

Choose a partition  0 nP x ,..., x= of [a, b] 

So that U(P, f)= L(P, f)<ε. 

The mean value theorem furnishes  points  i i 1 it x , x− such that 

 i i 1 i iF(x ) F(x ) f(t ) x−− =   

For i=1,2,…,n, 

Thus   

n

i i

i 1

f(t ) x F(b) F(a)
=

 = −  

From the known theorem, it follows that  

b

a

F(b) F(a) f (x) dx− −    

Since this holds for every ε>0, the proof is complete. 
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UNIT II 

Definition: 

Suppose {fn}, n=1,2,3,…, is a sequence of functions defined on a set E, and suppose that the 

sequence of numbers {fn(x)} converges for every x E . We can then define a function f by 

 n
n

f (x) lim f (x),    (x E)
→

=  . ---------(1) 

Here we say that {fn} converges on E and that f is the limit, or the limit function, of {fn}. 

Some times we say that “{fn} converges to f pointwise onE” if (1) holds. 

 
n

n 1

f (x) f (x),    (x E)


=

=   --------(2) 

The function f is called the sum of the series 
nf . 

f is continuous at a limit point x if  

 
t
lim f (t) f (x)
→

=  

Limit of a sequence of continuous functions is continuous. 

 n n
t x n n t x
lim lim f (t) lim lim f (x)
→ → → →

=  ---------(3) 

Example 1: 

For m=1, 2, 3, …, n, n=1, 2, 3, …, let m,n

m
S

m n
=

+
 

Then for every fixed n,  

  m,n
m
lim S 1,
→

=
 

So that   m,n
n m
lim lim S 1,
→ →

=
-----------------(1) 
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On the other hand, for every fixed m, 

  m,n
n
lim S 0,
→

=
 

So that 

  m,n
n m
lim lim S 0,
→ →

=
-------(2) 

Example 2: 

 Let  
n

sin nx
f (x) ,    (x real, n=1,2,3,...)

n
=  -------(1) 

And  n
n

f (x) lim f (x) 0
→

= =  

Then 
'f (x) 0,= and  

 
'

nf (x) n cosnx,=  

So that {fn’} does not converge to f’. 

For instance, 
'

nf (0) n= →  

As n→ , whereas f’(0)=0. 

Example 3: 

 2 2 n

nf (x) n x(1 x ) ,   (0 x 1,  n=1,2,3,...)= −    -------(1) 

For  0 x 1  , we have 

 n
n
lim f (x) 0
→

= , 

By known theorem,  

Since nf (0) 0= , 

 n
n
lim f (x) 0,  (0 x 1)
→

=     --------(2) 

 

1

2 n

0

1
x(1 x ) dx

2n 2
− =

+  

In spite of  (2), 
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1 3

n

0

n
f (x)dx

2n 2
= →+

+  as n→  

If in (1), we replace n2 by n, (2) still holds,  

But we have 

 

1

n
n n

0

n 1
lim f (x)dx lim

2n 2 2→ →
= =

+ , 

Whereas 

 

1

n
n

0

lim f (x) dx 0
→

  =
   

Thus the limit of the integral need not be equal to the integral of the limit, even if both are finite. 

Uniform Convergence 

A sequence of functions {fn}, n=1,2,3,…, converges uniformly on E to a function f if for every 

ε>0 there is an integer N such that n N  implies  

 nf (x) f (x)−      for all x E.  -------(1) 

Every uniformly convergent sequence is point wise convergent. 

The difference between the two concept: 

• If  { fn} converges pointwise on E, then there exists a function f such that, for every ε>0, 

and for every x E , there is an integer N, depending on ε and on x, such that (1) holds if 

n N ;  

• if {fn} converges uniformly on E, it is possible, for each ε>0, to find one  integer N which 

will do for all x E . 

The  series nf (x)  converges uniformly on E if the sequence { Sn} of partial sums defined by 

 
n

t n

t 1

f (x) s (x)
=

=  

Converges uniformly on E. 

 

Theorem 2.1: Cauchy Criterion for Uniform Convergence 
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The sequence of functions { fn} defined on E, converges uniformly on E if and only if for every 

ε>0 there exists an integer N such that m N , x E implies  

  n mf (x) f (x)−    --------(1) 

Proof: 

Suppose { fn} converges uniformly on E, 

Let f be the limit function. 

Then there is an integer N such that n N , x E implies 

 nf (x) f (x)
2


−  , 

So that 

 n m n mf (x) f (x) f (x) f (x) f (x) f (x)−  − + −    

If n N , m N , x E . 

Conversely, 

Suppose the Cauchy condition holds. 

The sequence  nf (x) converges, for every x, to a limit which we may call f(x). 

Thus the sequence  nf converges on E, to f. 

Now we have to prove that convergence is uniform. 

Let ε>0  be given, 

Choose N such that (1) holds, 

Fix n, and let m→ in (1). 

Since mf (x) f (x) as  m→ → , 

That implies  

 nf (x) f (x)−    

For every n N  and every x E ,  
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Which completes the proof. 

Theorem 2.2: 

Suppose n
n
lim f (x) f (x),  (x E)
→

=  . 

Put 
n n

x E

M sup f (x) f (x)


= −  

Then nf f→  uniformly on E if and only if nM 0 as n→ → . 

Theorem 2.3: 

Suppose  nf  is a sequence of functions defined on E, and 

Suppose ( )n nf (x) M ,   x E,  n=1,2,3,...  . 

Then nf  converges uniformly on E if nM converges.[converse is not true] 

Proof:  If nM  converges, then,  

For arbitrary ε>0, 

 
m m

t t

t n t n

f (x) M ,   (x E),
= =

      

Provided m and n are large enough. Uniform convergence now proved from theorem 2.1. 

UNIFORM CONVERGENCE AND CONTINUITY 

Theorem 2.4: 

Suppose nf f→ uniformly on a set E in a metric space. Let x be a limit point of E, and 

suppose that  

n n
t x
lim f (t) A ,  (n=1,2,3,...)
→

=   ---------(1) 

Then  nA converges, and 

  n
t x n
lim f (t) limA ,  (n=1,2,3,...)
→ →

= ------(2) 

In other words, 
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  n n
t x n n t x
lim lim f (t) lim limf (t),  (n=1,2,3,...)
→ → → →

= ------(3) 

Proof: 

 Let ε>0 be given. 

By the uniform convergence of  nf , there exists N such that n N,m N, t E   implies 

  n mf (t) f (t)−  
 ---------(4) 

Let t x→  in (4), we obtain 

  n mA A−  
 

For n N,m N,   so that  nA  is a Cauchy sequence and therefore converges , to A(say). 

 n n n nf (t) A f (t) f (t) f (t) A A A.−  − + − + −
 --------(5) 

We first choose n such that 

 nf (t) f (t)
3


− 

    ---------(6) 

For all t E , and such that 

 nA A
3


− 

  ---------(7) 

Then for this n, we choose a neighborhood V of x such that  

 n nf (t) A
3


− 

  --------(8) 

If t V E,  t x   . 

Substituting the inequalities (6) to (8) into (5),  

We see that  f (t) A−  
 

Provided t V E,  t x   . 

This is equivalent 
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 n
t x n
lim f (t) limA
→ →

=  

Theorem 2.5: 

If  nf is a sequence of continuous functions on E, and if nf f→  uniformly on E, then f is 

continuous on E. 

Note: 

The converse is not true; that is, a sequence of continuous functions may converge to a 

continuous function, although the convergence is not uniform. 

Theorem 2.6: 

Suppose K is compact, and  

(a)  nf  is a sequence of continuous functions on K, 

(b)  nf converges pointwise to a continuous function f on K, 

(c) n n 1f (x) f (x)+  for all x K, n=1,2,3,… 

Then nf f→ uniformly on K. 

Proof: 

Put n ng f f= − . 

Then gn is continuous, 

ng 0→ pointwise, and n n 1g g + . 

We have to prove that ng 0→ uniformly on K. 

 Let ε>0 be given. 

 Let Kn be the set of all nx K with g (x)   . 

Since gn is continuous, 

Kn is closed.  

Hence compact.  [since known theorem] 

Since n n 1g g + , 
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We have n n 1K K + . 

Fix x K  . 

Since ng (x) 0→ , 

We see that nx K    if n is sufficiently large. 

Thus if nx K   . 

In other words, nK    is empty. 

Hence Kn is empty for some N. 

It follows that n0 g (x)    for all x K  and for all n N . 

This proves the theorem. 

Definition: Supremum norm 

If X is a metric space, C(X) will denote the set of all complex-valued, continuous, bounded 

functions with domain X. 

Each f )C(x its supremum norm 

  
x X

f sup f (x)


= . 

Since f is assumed to be bounded,  

  f  . 

It is obvious that f 0=  only if f(x)=0 for every x X , that is only if f=0. 

If h=f+g, then 

  h(x) f (x) g(x) f g +  +  

For all x X ; 

Hence  f g f g+  + . 

If we define the distance between f C(x)  and  g C(x) to be f g− , 

It follows that for a metric are satisfied. 
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We have thus made C(x) into a metric space. 

A sequence  nf converges to f with respect to the metric of  C(x)  if and only if nf f→

uniformly on X. 

Accordingly, closed subsets of C(x)  are sometimes called uniformly closed, the closure of a 

set A C(x) is called its uniform closure, and so on. 

Theorem 2.7:  

The above metric makes C(x) into a complete metric space.   

Proof:  

Let  nf be a Cauchy sequence in C(x). 

Each ε>0 corresponds as N such that  

  n mf f  if n N and m N.−    
 

It follows by theorem 2.1, f is continuous. 

Moreover, f is bounded, since there is an n such that  

 nf (x) f (x) 1−   for all x X  and fn is bounded. 

Thus ( )f C x , and since nf f→  uniformly on X, 

We have nf (x) f (x) 0 as  n− → → . 

UNIFORM CONVERGENCE AND INTEGRATION 

Theorem 2.8: 

Let α be  monotonically increasing on [a, b]. Suppose  nf ( )   on [a, b], for n=1,2,3,…, 

and suppose nf f→ uniformly on [a, b]. Then f ( )   on [a, b], and 

  
b b

n
n

a a

f  d lim f  d
→

 =    -------(1) 

Proof: 

 It suffices to prove this for real fn, 
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Put n nsup f (x) f (x) = −  ----------(2) 

The supremum being taken over a x b  . 

Then  n n n nf f f−   + , 

So that the upper and lower integrals of f satisfy 

 ( ) ( )
b b

n n n n

a a

f d fd fd f d

−

−

−       +       -------(3) 

Hence 

   n0 fd fd 2 (b) (a)

−

−

  −     −   

Since n 0 as n → →  (Theorem 2.2), the upper and lower integrals are equal. 

Thus f ( )  . 

Another application of (3) is  

   
b b

n n

a a

fd f d (b) (a) −     −   ------(4) 

This implies (1). 

Corollary: 

 If  nf ( )   on [a, b]  and if  

  n

n 1

f (x) f (x),   (a x b)


=

=   , 

The series converging uniformly on [a, b], then 

  
b b

n

n 1a a

fd f d


=

 =    the series may be integrated term by term. 

UNIFORM CONVERGENCE AND DIFFERENTIATION 

Some stronger hypotheses are required for the assertion that 
' '

nf f→  if nf f→ . 
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Theorem 2.9: 

Suppose  nf  is a sequence of functions, differentiable on [a, b] and such that  n 0f (x )  

converges for some point x0 on [a, b]. If  'nf converges uniformly on [a, b], then  nf converges 

uniformly on [a, b], to a function f, and  

  ' '

n
n

f (x) limf (x),    (a x b).
→

=      --------- (1) 

Proof:  

 Let ε>0 be given. 

Choose N such that n N,m N  , implies 

  n 0 m 0f (x ) f (x )
2


−   ------- (2) 

And   ' '

n mf (t) f (t) ,     (a t b)
2(b a)


−   

−     -------(3) 

If we apply the mean value theorem to the function fn-fm, (3) shows that 

  
n m n m

x t
f (x) f (x) f (t) f (t)

2(b a) 2

−  
− − +  

−
 ----- (4) 

For any x and t on [a, b], if n N,m N  . The equality 

  n m n m n 0 m 0 n 0 m 0f (x) f (x) f (x) f (x) f (x ) f (x ) f (x ) f (x )−  − − + + −  

Implies, by (2) & (4) that 

  ( )n mf (x) f (x) ,   a x b,n N,m N−       , 

So that  nf  converges uniformly on [a, b]. 

Let n
n

f (x) lim f (x),   (a x b)
→

=    

Fix a point x on [a, b] and define 

 n n
n

f (t) f (x) f (t) f (x)
(t) , (t)

t x t x

− −
 =  =

− −
  --------(5) 

For  a t b,t x   . 
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Then  '

n n
t x
lim (t) f (x),   (n=1,2,3,...)
→
 =    -------- (6) 

The first inequality in (4) shows that  

  
n m(t) (t) ,     (n N,m N)

2(b a)


 −   

−
, 

So that  n converges uniformly, for t x . 

If we now apply theorem 2.4 to  n , (5) & (6) show that  

  '

n
t x n
lim (t) limf (x);
→ →
 =  

This is the required one. 

Theorem 2.10: 

There exists a real continuous function on the real line which nowhere differentiable. 

Proof:  

Define  ( )(x) x ,  1 x 1 = −     ------ (1) 

And extend the definition of (x)  to all real x by requiring that  

 (x 2) (x) + =    ------------- (2) 

Then, for all s and t, 

 (s) (t) s t −  −  --------- (3) 

In particular, φ is continuous on R1 . 

Define  

n

n

n 0

3
f (x) (4 x)

4



=

 
=  

 
   -------- (4) 

Since 0 1   , theorem 2.3 shows that the series (4) converges uniformly on R1. 

By theorem 2.5, f is continuous on R1. 

Now fix a real number x and a positive integer m. 
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Put  
m

m

1
4

2

− =     -------- (5) 

Where the sign is so chosen that no integer lies between m4 x  and ( )m

m4 x+ . 

This can be done, since 
m

m

1
4

2
 = . 

Define 
( )n n

m

n

m

4 x (4 x)+  −
 =


 -------- (6) 

When n>m, then n

m4  , so that n 0 = , when 0 n m  ,  

(3) implies that 
n

n 4  . 

Since 
m

m 4 = ,  

It concludes that 
( ) nm

m

n

n 0m

f x f (x) 3

4=

+  −  
=  

  
  

 
m 1

m n

n 0

3 3
−

=

 −   

 
m1

(3 1)
2

= +  

As mm ,  0.→  →  

It follows that f is not differentiable at x. 

EQUICONTINUOUS FAMILIES OF FUNCTIONS 

 We know that every bounded sequence of complex 

numbers contains a convergent subsequence, and something similar is true for sequences of 

functions. 

Here we define two kinds of boundedness. 

Uniformly bounded 

Let  nf  be a sequence of functions defined on a set E. 
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We say that  nf  is pointwise bounded on E if the sequence  nf (x) is bounded for every x E , 

that is, if there exists a finite-valued function  defined on E such that  

 nf (x) (x),   (x E, n=1,2,3,....).    

We say that  nf  is uniformly bounded on E if there exists a number M such that 

 nf (x) M,   (x E, n=1,2,3,....).   

 

Now if  nf  is pointwise bounded on E and E1 is countable subset of E, it is always possible to 

find a subsequence  nkf such that  nkf (x) converges for every 1x E . 

This can be done by the diagonal process which is used in the proof of Theorem 2.11. 

Even if  nf is a uniformly bounded sequence of continuous functions on a compact set E, there 

need not exist a subsequence which converges pointwise on E. 

Example 1: 

Let ( )nf (x) sin nx,  0 x 2 ,  n=1,2,3,...=    . 

Suppose there exists a  sequence  kn such that  ksin n x  converges, for every  x 0,2  . 

In that case we must have  

                            ( )k k 1
k
lim sin n x sin n x 0,  (0 x 2 )+
→

− =    ; 

Hence                  ( )
2

k k 1
k
lim sin n x sin n x 0,  (0 x 2 )+
→

− =     ------- (1) 

By Lebesgue’s theorem concerning integration of boundedly convergent sequence. 

(1) Implies, 

                 ( )
2

2

k k 1
k

0

lim sin n x sin n x 0



+
→

− =       ----------  (2) 

But a simple calculation shows that 

                       

                     ( )
2

2

k k 1

0

sin n x sin n x 2



+− =   
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Which contradicts (2). 

Example 2: 

                    
( )

( )
2

n 22

x
f (x)  ,  0 x 1,  n=1,2,3,... .

x 1 nx
=  

+ −
 

Then nf (x) 1 , so that  nf  is uniformly bounded on [0, 1]. 

Also         ( )n
n
limf (x) 0 ,  0 x 1 .
→

=    

But          n

1
f 1,  (n=1,2,3,...)

n

 
= 

 
 

So that no subsequence can converge uniformly on [0, 1]. 

The concept which is needed in this connection is that of equicontinuity; it is given in the 

following definition. 

Definition: Equicontinuous 

A family F of complex functions f defined on a set E in a metric space X is said to be 

equicontinuous on E if for every ε>0 there exists a δ>0 such that  

 f (x) f (y)−    

Whenever d(x,y)<δ, x E,  y E,   and f  F. 

Here d denotes the metric of X. 

It is clear that every member of an equicontinuous family is uniformly continuous. 

The sequence given in Ex:2 is not equicontinuous. 

Theorem 2.11: 

     If   nf is a pointwise bounded sequence of complex functions on a countable set E, then  nf  

has a subsequence  nkf  such that  nkf (x)  converges for every x E.  

Proof: 

Let  ix ,i 1,2,3,...,=  be the points of E, arranged in a sequence. 
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Since  n 1f (x )  is bounded, there exists a subsequence, which we shall denote by  1,kf such that 

 1,k 1f (x )  converges as k → . 

Now consider sequences 1 2 3S ,S ,S ,...,  

We represent by the array 

                        

1 1,1 1,2 1,3 1,4

2 2,1 2,2 2,3 2,4

3 3,1 3,2 3,3 3,4

S : f  f  f  f  ...

S : f  f  f  f  ...

S : f  f  f  f   ... 

.................................

 

Which have the following properties: 

(a) Sn is a sequence of Sn-1, for n=2,3,4,…. 

(b)  n,k nf (x ) converges, as k →  

(c) The order in which the functions appear is the same in each sequence: 

(i.e.,) if one function precedes another in S1, they are in the same relation in every Sn, 

until one or the other is deleted. 

Hence when going from one row in the above array to the next below, functions may 

move to the left but never to the right. 

Now we go down the diagonal of the array. 

(i.e.,) we consider the sequence  

                        1,1 2,2 3,3 4,4S: f  f  f  f  ... , 

By (c) the sequence S (except possibly its first n-1 terms) is a sub-sequence of Sn, for n=1,2,3,… 

Hence (b) implies that  n,n if (x )  converges, as n→ , for every ix E . 

Theorem 2.12: 

If K is compact metric space, if  nf C(K)  for n=1,2,3,…, and if   nf converges uniformly on 

K, then  nf is equicontinuous on K. 

Proof: 

Let ε>0 be given. 



 

Dr. A.Dhanalakshmi, Asst. Prof. of Mathematics, SCSVMV. Page 37 
 

Since  nf converges uniformly, there is an integer N such that  

                       n Nf f ,  (n>N)−    --------- (1) 

Since continuous functions are uniformly continuous on compact sets, there is a δ>0 such that 

                       t tf (x) f (y)−     ------------ (2) 

If  ( )1 i N  and   d x, y    . 

          If  n>N and ( )d x, y   ,it follows that 

          n n N N N nf (x) f (y) f (x) f (y) f (y) f (y) 3−  − + −    

In conjuction with (2), this proves the theorem. 

Theorem 2.13: 

If K is compact metric space, if  nf C(K)  for n=1,2,3,…, and if   nf  is pointwise bounded and 

equicontinuous on K, then  

(a)  nf is uniformly bounded  on K. 

(b)  nf contains a uniformly convergent subsequence. 

Proof: 

(a) Let ε>0 be given. 

Choose δ>0, 

By the definition of equicontinuous,  

                n nf (x) f (y)−     ------------ (1) 

For all n, provided that ( )d x, y   . 

     Since K is compact, there are finitely many points p1,…, pr in K 

Such that to every x K corresponds at least one pi with ( )id x,p   . 

Since  nf is pointwise bounded, 
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There exist iM    such that n i if (p ) M  for all n. 

If M= max(M1,…, Mr), then 

                 nf (x) M +  for every x K . 

Therefore   nf is uniformly bounded  on K. 

(b) Let E be a countable dense subset of K. 

Theorem 2.11. shows that  nf has a subsequence  nif such that  nif (x) converges for 

every x K . 

Put ni if g= . 

Now we have to prove that  ig  converges uniformly on K. 

Let ε>0 be given. 

         Choose δ>0. 

Let V(x, )  be the set of all y K with ( )d x, y   . 

Since E is dense in K . 

And K is compact, 

There are finitely many points x1,…, xm in E such that 

                  1 mK V(x , ) ... V(x , )      ------- (2) 

Since  ig (x)  converges for every x K , there is an integer N such that 

                       i n j ng (x ) g (x )−       ---------- (3) 

Whenever i N,  j N, 1 s m    . 

If x K , (2) shows that nx V(x , )   for some s, 

So that          i i ng (x) g (x )−    

For everyi. 

If i N,  j N,   it follows from (3) that 

i j i j n j n jg (x) g (x) g (x) g (x ) g (x ) g (x) 3−  − + −    
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Hence  nf contains a uniformly convergent subsequence. 

THE STONE-WEIRSTRASS THEOREM 

Theorem 2.14: 

If f is a continuous complex function on [a, b], there exists a sequence of polynomials Pn such 

that    

                   n
n
lim P (x) f (x)
→

=  

uniformly on [a, b]. If f is real, the Pn may be taken real. 

Proof: 

We assume that, without loss of generality, that [a, b]=[0, 1]. 

We may also assume that f(0)=f(1)=0. 

For proving this theorem for this case, 

Consider g(x)=f(x)-f(0)-x[f(1)-f(0)],    ( )0 x 1  . 

Here g(0)=g(1)=0, 

and if g can be obtained as the limit of a uniformly convergent sequence of polynomials, 

it is clear that the same is true for f, 

since f-g is a polynomial. 

We define f(x) to be zero for x outside [0, 1]. 

Then f is uniformly continuous on the whole line. 

Put      ( )2 n

n nQ (x) c (1 x ) ,   n 1,2,3,...= − =   -------- (1) 

Where cn is chosen so that  

             ( )
1

n

1

Q (x)dx 1,   n 1,2,3,...
−

= =         ---------(2) 

We required some information about the order of magnitude of cn. 

Since         
1 1

2 n 2 n

1 0

(1 x ) dx 2 (1 x ) dx
−

− = −   
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1

n

2 n

0

2 (1 x ) dx −  

                                        

1

n

2

0

2 (1 nx )dx −  

                                         
4 1

3 n n
=   

 

From  (2),        
nc n  

The inequality ( )
n

2 21 x 1 nx−  −  which we used above is true by considering the function 

                         ( )
n

2 21 x 1 nx− − +  

Which is zero at x=0 and whose derivative is positive in (0,1). 

For any δ>0, (2) implies 

                                     ( )2 n

nQ (x) n (1 ) ,   x 1 −   
,  -------- (3) 

So that  nQ 0 → uniformly in  x 1  
 

Now set  

                  

1

n n

1

P (x)= f (x t)Q (t)dt,   (0 x 1)
−

+        --------- (4) 

The assumptions about f show, by a simple change of variable, that 

         

1 x

n n

x

P (x)= f (x t)Q (t)dt,   

−

−

+          

                 

1

n

0

f (t)Q (t x)dt,   = −       

And the last integral is clearly a polynomial in x. 
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Thus  nP  is a sequence of polynomial, which are real if f is real. 

Given  ε>0 , Choose δ>0, such that y x <−   implies 

                   f (y) f (x) <
2


−  

Let M= sup|f(x)|. 

Using (1) & (3), 

And the fact that nQ (x) 0 , 

We see that for 0 x 1  . 

1

n n

1

P (x)-f(x) = [f (x t) f(x)]Q (t)dt  
−

+ −  

                    
1

n

1

f (x t) f(x) Q (t)dt
−

 + −  

                  
1

n n n

1

2M Q (t)dt Q (t)dt 2M Q (t)dt
2

 

− − 


 + +    

                  
2 n4M n (1- ) +

2


   

                   <ε 

For all large enough n, which proves the theorem. 

Corollary: 

For every interval [-a, a] there is a sequence of real polynomials Pn such that 

( )n 0,a nP 0 s → → . The polynomials 

 Pn(x)= Pn*(x)= Pn*(0)     (n=1,2,3,…) 

Have desired properties.  

Definition:   An Algebra : A family ‘A’ of complex functions defined on a set E is said to be an 

algebra if 

(a) f g A+   
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(b) fg A  

(c) cf A , for all f A,g A  and for all complex constants c, 

If  A is closed under addition, multiplication and scalar multiplication. 

If we consider algebras of real functions, in the case (iii) require for all real c. 

If A has the property that f A, whenever nf A,(n 1,2,3,...) = and nf f→  uniformly on E, then 

A is said to be uniformly closed. 

Let B be the set of all functions which are limits of uniformly convergent sequences of members 

of A. Then B   is called the uniform closure of A. 

Example: The set of all polynomials is an algebra, and the Weiestrass theorem may be stated by 

saying that the set of continuous functions on [a, b] is the uniform closure of the set of 

polynomials on [a, b]. 

Theorem 2.15: Let B be the uniform closure of an algebra A of bounded functions. Then B is 

uniformly closed algebra. 

Proof:  

If  f B, and g B, there exist uniformly convergent sequences    n nf , g such that  

 nf f→ , ng g→  and nf A , ng A . 

Since give function is bounded, it is easy to show that  

 n n n n nf g f g,  f g fg,  cf cf+ → + → → , 

Where c is any constant, the convergence being uniform in each case. 

Hence f g B,  fg B, cf B+    , 

So that B is an algebra. 

By theorem 2.14, B is (Uniformly) closed. 

Definition: Separate points: 

Let A be a family of functions on a set E. Then  A is said to separate points on E if to every pair 

of distinct points 1 2x , x E there corresponds a function f A  such that 1 2f (x ) f (x ) . 

     If to each x E  there corresponds a function g A such that g(x) 0 , it is say that A 

vanishes at no point of E. 



 

Dr. A.Dhanalakshmi, Asst. Prof. of Mathematics, SCSVMV. Page 43 
 

Example: An example ofan algebra which does not separate points is the set of all even 

polynomials, say on [-1, 1], since f(-x)=f(x) for every even function f. 

Theorem 2.16: Suppose A is an algebra of function on a set E, A separates point on E, and A 

vanishes at no point of  E. Suppose 1 2x , x  are distinct points of E, and c1,c2 are constants (real if 

A is a real algebra). Then A contains a function f such that 

  1 1 2 2f (x ) c ,   f (x ) c= = . 

Proof: 

Let us assume A contains the functions g, h, k such that 

 1 2 1 2g(x ) g(x ),  h(x ) 0,  k(x ) 0    

Put 1 2u gk g(x )k,  v=gh-g(x )h= −  

Then  1 2 2 1u A,v A,u(x ) v(x ) 0,u(x ) 0,v(x ) 0  = =    

Therefore 1 2

1 2

c v c u
f

v(x ) u(x )
= +  

Has the required properties. 

 

Theorem 2.17: Let A be an algebra of real continuous functions on a compact set K. If A 

separates points on K and if A vanishes at no point of K, then the uniform closure B of A 

consists of all real continuous functions on K. 

We prove this theorem into four steps: 

STEP 1: If f B  then f B . 

Proof:   Let   a sup f (x) ,   (x K)=    -------- (1) 

And let ε>0 be given. 

By corollary 2.14, there exist real numbers c1,…, cn such that 

 
n

i

i

i 1

c y y ,   (-a y a)
=

−       --------(2) 

Since B is an algebra, the function 
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n

i

i

i 1

g c f
=

=   is a member of B. 

By (1) & (2), we have 

 g(x) f (x) ,  (x K)−    . 

Since B is uniformly closed, this shows that f B . 

STEP 2: If f B  and g B , then  

By max(f, g) we mean the function  h is defined  by 

 
f (x) if  f(x) g(x)

h(x)
g(x) if  f(x)<g(x)


= 


 

In the same way we define min(f, g). 

Proof: 

 It follows from the step 1 and the identities 

 
f gf g

max(f ,g) ,
2 2

−+
= +  

 
f gf g

min(f ,g) ,
2 2

−+
= −  

By iteration, the result can of course be extended to any finite set of functions: If  

1 n 1 nf ,..., f B,  then max(f ,..., f ) B   and 1 nmin(f ,..., f ) B  

STEP 3: Given  a real function f, continuous on K, a point x K,and 0,    there exists a 

function xg B  such that xg (x) f(x)=  and 

 ( )xg (t) f (t) ,   t K −   ------- (3) 

Proof:   since A B   and A satisfies the hypotheses of theorem 2.16 so does B. 

Hence for every y K , we can find a function yh B  such that 

 hy(x)=f(x),   hy(y)=f(y)  ------- (4) 

by the continuity of hy there exists an open set Jy, containing y, such that 
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 y yh (t) f (t) ,  (t J ) −     ------(5) 

Since K is compact, there is finite set of points 1 ny ,..., y such that 

 
1 ny yK J ... J      ---------(6) 

Put ( )
1 nx y yg max h ,..., h .=  

By step2,    xg B , and the relations (4) to (6) show that gx has the other required properties. 

STEP 4: Given a real function f, continuous on K, and ε>0, there exists a function h B such 

that 

 h(x) f(x) ,  (x K)−      ------- (7) 

Since B is uniformly closed, this statement is equivalent to the conclusion of the  theorem. 

Proof: 

Let us consider the function gx , for each x K , constructed in step 3. 

By the continuity of gx ,there exist open sets Vx containing x, such that 

 x xg (t) f (t) ,  (t V ) +    -------- (8) 

Since K is compact, there exists a finite set of points  1 mx ,..., x  such that 

 
1 nx xK V ... V      ---------(9) 

Put ( )
1 mx xh min g ,...,g .=  

By step 2, h B  and (3) implies 

 h(t) f (t) ,  (t K) −   ------- (10) 

Whereas (8) & (9) imply 

 h(t) f (t) ,  (t K) +    ------ (11) 

Finally , (7) follows from (10) & (11). 

Definition : Self-adjoint: 
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A is said to be self-adjoint , if for every f A  its complex conjugate f  must also belongs to A. 

f  is defined by f (x) f (x)= . 

 

  

 



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Scanned by CamScanner



Dr. A. Dhanalakshmi, Asst. Prof. of Mathematics, SCSVMV. Page 1 
 

UNIT IV 
Measures and Outer Measures 

RING: 

 A class of sets R, of some fixed space is called a ring if whenever E  and F  then 

E F  and E-F belong to R. 

Example 1: The class of finite unions of intervals of the form [a, b) forms a ring. 

σ-ring: 

 A ring is called a σ-ring if it is closed under the formation of countable unions. 

Example 2: 

 Show that every algebra is a ring and every σ-algebra a σ-ring but that the converse is not 

true. 

Theorem 4.1: 

There exist a smallest ring and a smallest σ-ring containing a given class of subsets of a space; it 

is referred as the generated ring and the generated σ-ring respectively. 

Proof: 

    In the proof of the Theorem 3.1.7, if we replace ‘algebra’ into ‘σ-algebra’ we get the proof of 

this theorem. 

Notation: 

S(R) - σ-ring S generated by the ring R  

H(R) – for the class consisting of S(R) together with all subsets of the sets of S(R) . 

Hereditary. 

A class of sets with this property, namely that every subset of one of its members belongs to the 

class, is said to hereditary. 

H(R) is a σ-ring and is the smallest hereditary σ-ring containing R. 

 H(R)= H(S(R))= H(H(R)) 

 

Definition : A set function µ defined on a ring R is a measure if  
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(i) µ is non-negative, 

(ii)  µ(ᶲ)=0, 

(iii) For any sequence {An} of disjoint sets of R such that n

n 1

A


=

 , we have 

n n

n 1n 1

A (A )
 

==

 
 =  
 

  

 If R is a σ-ring, the condition n

n 1

A


=

  is  clearly redundant. 

Complete: 

 A measure µ on R is complete if whenever E R , F E  and F E and µ(E)=0, then 

F R . 

σ-finite: 

 A measure µ on R is σ-finite if, for every set E R , we have n

n 1

E E


=

=  for some 

sequence {En} such that n nE R and (E )     for each n. 

Example : show that Lebesgue measure m defined on M, the class of measurable sets of R, is σ-

finite and complete. 

Outer Measure: 

 If R is a ring, a set function µ* defined on the class H(R) is an outer measure if 

(i) µ* is non-negative, 

(ii) if A B,  then  *(A) *(B)     

(iii) *( ) 0  = , 

(iv) For any sequence {An} of sets of H(R), 

n n

n 1n 1

* A *(A )
 

==

 
   

 
 , 

(i.e.,) µ* is countably subadditive. 

Example: If  A,B R and A B then (A) (B)     . 

 

EXTENSION OF A MEASURE 
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Theorem 4.2: 

Let {Ai} be a sequence in a ring T, then there is a sequence {Bi} of disjoint sets of R such that 

i iB A for each i and 
N N

i i

i 1 i 1

A B
= =

= for each N, so that   

   i i

i 1 i 1

A B
 

= =

=  

Proof:  

Define {Bi} inductively by i iB A= , 
n 1

n n i

i 1

B A B
−

=

= − for n>1. 

Clearly i i iB R and B A   for each i. 

Also, as Bn and 
n 1

i

i 1

B
−

=

are disjoint  

We have n mB B =   for n>m. 

Finally we have i iB A=  and if 
k k

i i

i 1 i 1

B A
= =

=  

That implies 

k k k

i k 1 i i

i 1 i 1 i 1

B A B B+

= = =

   
= −    

     

  
k k

k 1 i k 1 i

i 1 i 1

A B A A+ +

= =

= =  

As required. 

Example: Show that n n

n 1

H R( ) E : E E ,E R


=

 
=   
 

 

Solution: It is easily checked that the right-hand side defines a class of sets which is hereditary, 

contains R, and is a σ-ring. So it contains H(R). 

But if nE R  for each n, 

We have  
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   n

n 1

E S( )


=

 

 

And so each subset belong to H(R). 

So it is proved. 

Theorem 4.3: 

If µ is a measure on a ring R and if the set function µ* is defined on H(R) by 

n n n

n 1 n 1

*(E) inf (E ) : E R,n 1,2,...,E E


= =

 
 =   =  

 


  -------- (1) 

𝜇∗ = 𝑖𝑛𝑓 [∑ 𝜇(𝐸𝑛): 𝐸𝑛𝜖𝑅,   𝑛 = 1,2, … , 𝐸 ⊆ ⋃ 𝐸𝑛

∞

𝑛=1

∞

𝑛=1

] 

Then     (i) E ,  *(E)= (E)   , 

 (ii) µ* is an outer measure on H(R). 

Proof: 

(i) If  E ,  (i) gives *(E) (E)   . 

Suppose that E ,  

And  
n

n 1

E E


=

   where nE ,  

By theorem 4.2 we may replace the sequence  iE E by a sequence {Fi} of disjoint 

sets of  R, 

Such that 
i i i

i 1

F E E and F E


=

  = . 

Then by previous example, i i(F ) (E )   for each i. 

So i i i

i 1i 1

(E) F (F ) (E )
 

==

 
 =  =    

 
  

Therefore (E) *(E)   . 

So  *(E)= (E)  . 

(ii)  *( )= ( )     by (i) 

the only other property of an outer measure which is not immediate, namely 

countable subadditivity, is shown as m*. 

 {Ei} is a sequence sets in H(R) . 
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From the definition of µ*,for each 0  , 

We can find for each i a sequence {Ei,j} of sets of R such that 

  
i

i i, j i, j i

j 1j 1

E E  and (E ) *(E ) / 2
 

==

    +  . 

The sets Ei,j form a countable class covering i

i 1

E


=

, 

So i i, j i

i 1 j 1 i 1i 1

* E (E ) *(E )
   

= = ==

 
     +  

 
   

But ε is arbitrary.  

µ* -Measurable: 

Let µ* be an outer measure on H(R). Then E H(R) is µ*-measurable if for each 

A H(R)  

  *(A) *(A E) *(A CE) =   +   

Theorem 4.4 : 

Let µ* be an outer measure on H(R) and let S* denote the class of µ*-measurable sets. Then S* 

is a σ-ring and µ* restricted to S* is a complete measure. 

Proof: 

 S* is closed under countable unions. 

It remains to be shown that if  

  E,F S*  then E-F S*  . 

Let A H(R)   

and we can write A as the union of the four disjoint sets  

  1A A (E F)= −  

  2A A E F=    

  3A A (F E)=  −  

  3A A (E F)=  −  

Since F is measurable, 

  1 4 2 3*(A) *(A A ) *(A A ) =  +    -------------- (1) 

 [since *(A) *(A E) *(A CE) =   +  ] 

Replacing A in *(A) *(A E) *(A CE) =   +   by 1 4A A and using the fact that 

E is measurable gives 

  1 4 1 4*(A A ) *(A ) *(A )  = +   --------------------- (2) 

Replacing A in *(A) *(A E) *(A CE) =   +   by 1 2 3A A A  and using the 

fact that F is measurable gives 
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  1 2 3 1 2 3*(A A A ) *(A ) *(A A )   = +    --------(3) 

From (1), (2) & (3) we have 

  4 1 2 3*(A) *(A ) *(A A A ) = +   , 

Which is the condition for E-F to be measurable. 

 Suppose that {Ei} is a sequence of disjoint sets in S*. 

Then we have  

 

 i i

i 1i 1

* E *(E )
 

==

 
 =  

 
 . 

So µ* is a measure on the σ-ring S*. 

 Also every set E H(R) such that µ*(E)=0 is µ*-measurable, 

For if A H(R) , 

  *(A) *(A E) *(A CE)    +   

   *(E) *(A) *(A)  + =   

So E is µ*-measurable, 

In particular if E S* and µ*(E)=0 and F E then it follows that F S* . 

So µ* is a complete measure on S*. 

Theorem 4.5: Let µ* be an outer measure on H(R) defined by µ on R,  then S* contains S(R), 

the σ-ring generated by R. 

Proof: 

Since S* is σ-ring it is sufficient to show that  

   R S* . 

If  E R,  A H(R)  , 

and ε>0, then by the definition of µ* in theorem 3 (1) there exists a sequence {En} of sets of R 

such that  

  n

n 1

A E


=

  and 

 n n n

n 1 n 1 n 1

µ*(A) (E ) (E E) (E CE)
  

= = =

+    =   +      

As µ is a measure. 

So *(A) *(A E) *(A CE) +     +   
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But ε is arbitrary so 

 *(A) *(A E) *(A CE)    +   

The opposite inequality is obvious, so E S* . 

It gives the result. 

Example:  

Show that if µ is a σ-finite measure on R, then the extension   of µ to S* is also σ-finite. 

Solution: Let E S* . 

Then by the definition of    there is a sequence {En} of set R such that 

  n

n 1

(E) (E )


=

   . 

But each En is, by hypothesis, the union of a sequence {En,i,i=1,2,…. }of set R such that  

  n,i(E )    for each n and i. 

So n,i

n 1 i 1

(E) (E ),
 

= =

    

and so E is the union of a countable collection of sets of finite  -measure. 

UNIQUENESS OF THE EXTENSION: 

Theorem 4.6: 

The outer measure µ* on H(R) defined by µ on R as in Theorem 4.3, and the corresponding outer 

measure defined by   on S(R) and   on S* are the same. 

Proof: 

We first observe that the outer measure β* defined by a measure β on a σ-ring T satisfies, for 

E H(T)  

   *(E) inf (F);E F =     ----------- (1) 

This is the case since 
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  n n n

n 1 n 1

*(E) inf (E );E E ,E


= =

 
 =    

 
 , 

and replacing the sets En by disjoint sets nF  , such that n nF E and  

  n n

n 1 n 1

E F
 

= =

= , 

We get n n n

n 1 n 1 n 1

(E ) (F ) F *(E)
 

= = =

 
   =    

 
   

 So (1) follows. 

Since H(R)=H(S(R))=H(S*), 

the outer measures to be considered have the same domain of definition. 

As  =   on R, 

n n n

n 1 n 1

*(E) inf (E ) : E E ,E R


= =

 
 =    

 
  

n n n

n 1 n 1

inf (F ) : E F ,F S(R)


= =

 
    

 
  

n 1

inf (F) : E F S(R)


=

 
=    

 
   by (1) 

 

n 1

inf (F) : E F S* as S* S(R)


=

 
     

 
  

*(E)   

So equality holds throughout and so by (1) the outer measures are equal. 

Corollary: since outer measure on H(R) determines the measurable sets and their measures, the 

measure and measurable sets obtained by extending, as in Theorem 4.3, µ on R,   on S(R) and 

  on S*  are the same, namely   on S*. 

Theorem 4.7: If µ is a σ-finite measure on a ring R, then it has a unique extension to the σ-ring 

S(R). 

Proof: By theorem 4.3, 

  on S(R) is an extension of µ. 

Suppose that ν is a measure on S(R) such that µ= ν on R; 
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We wish to show that  =ν on S(R). 

If n n n

n 1

E S(R) and >0,  [E ],  E R,  E E


=

      

Such that  n

n 1

(E) (E )


=

 +    . 

But n

n 1

A E


=

=  

By Theorem 4.2, may be written as the union of disjoint sets Fn, n n nF E ,  F R  ; 

We get 

 n n

n 1 n 1

(E) (F ) (F ) (A) (E)
 

= =

 +    =  =      

So (E) (E)    

 Suppose that 

E S(R),  (E)  and >0    

 then as above there exists 

A E such that 

(A) (E)   +   where 
n

n 1

A F


=

= , the sets Fn being disjoint sets of R, 

So that (A) (A) =  . 

So (E) (A) (E) (A E)   =  +  − . 

But, by the first part, 

 (A E) (A E) −   − , 

Also since (E)   . 

We have (A E) −   . 

So (E) (E)   +   

Hence (E) (E) =   if (E)   . 

As µ is σ-finite, for each  E S(R)  

We have 
n

n 1

E E


=

  

Where, for each n, nE R  and n(E )   . 
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Then we may write 
n

n 1

E F


=

=  

Where Fn are disjoint sets of R and n(F )   . 

So 
n n

n 1 n 1

(E) (F ) (F ) (E)
 

= =

 =  =  =  . 

COMPLETION OF A MEASURE 

Theorem 4.8: 

If µ is a measure on a σ-ring S, then the class S  of sets of the form E N  for any sets E, N such 

that E S  while N is contained in some set in S of zero measure, is a σ-ring , and the set 

function   defined by (E N) (E)  =  is a complete measure on S . 

Proof: It is convenient to have two different descriptions of the sets of S  so we prove the set 

theoretic identity 

  E N (E M) (M (E N) = −      ------- (1) 

For any sets E, M, N such that M N.  

Let x E N  , then if x M  we have  

  x M (E N)   , 

While if x CM we have x CN  so x E N −  

And hence x E M − . 

To get the opposite inclusion in (1), 

Suppose that x belongs to the right-hand side. 

If x M (E N)   , then x E N  ; 

If x E M −  we have x E N E N −   . 

 Let D S,  D=E N,  as above with N M S with (M)=0   . 

Then by (1), D F A where F A=  and F S and A M S with (M)=0=        , 

And since for F, A disjoint we have F A F A =   the two characterizations of the sets of S  are 

equivalent. 
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Now if 
iD S,i 1,2,.... =  

On writing i i iD F A=   

We see that i

i 1

D S


=

 . 

If  1 1 1 2 2 2D E N  and  D E N=  =   belong to S 

We have  

 1 2 1 2 1 2D D (E E ) (N N ) =    . 

So 
1 2D D S   and so 

1 2 1 2 2D D (D D ) D S− =    . 

So S  is a σ-ring. 

 Also 1 2 1 2 1 2D D  only if E E N N =   =  . 

So if 1 1 2 2 E N E N =  , 

We have 1 2(E E ) 0  =  

And hence 1 2(E ) (E ) =  . 

So   is unambiguously defined. 

Also  is a measure; for clearly ( ) 0  = ,  

And if {Di} is a sequence of disjoint sets of S , i i iD F A=   ,say, in the notation used above, 

So that i jF A =   for all i and j, then 

 ( ) ( ) ( )i i i i i i iD F A F A ( F ) (F ) =  =   =  =   

      = i i i(F A ) (D ) =    

So   is countably additive. 

 Finally µ is complete,   

for let 
0D D S   where 

0(D ) 0. =  
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so 0 0 0D E N=   where 0 0 0 0 0 0N M ,E ,M S,  (E ) (M ) 0   = = , 

and so 0 0 0 0 0D M ' E M S,  (M ') 0 =    =  

then  0 0D E N with E= , N=D E M=      

and so D S . 

Example: show that the extension   of Theorem 4.8 is unique in the sense that if µ’ is a 

complete measure on a σ-ring ,  
' 'S S and   =  on S then 

'  on S. =   

Solution: since µ’  is complete it is easily seen that 
'S S  . 

For D S  

We have as above D F A;=    

A disjoint sets with F S,  A M S with (M)=0    . 

So 
' ' '(D) (F) (A) (D). =  + =   

We call   on S  the completion of  on S. 

Theorem 4.9:  

The completion of a σ-finite measure is σ-finite. 

Proof: 

Let D S . 

As is theorem 4.8, 

 D F A=   where F S and (A) 0  = . 

So i

i 1

F F


=

=   where i(F )   , 

And hence i

i 1

D A F


=

=   is a countable union of sets of finite  -measure. 

MEASURE SPACES 
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Measurable Space: A pair [[X, S]] where S is a σ-algebra of subsets of a space X, is called a 

measurable space. The sets of S are called measurable sets. 

Measure space: [[X, S, µ]] is called a measure space if [[X, S]] is a measurable space and µ is a 

measure on S. 

Example: [[R, M, m ]] and [[R, B, m]] are measure spaces, where B denotes the Borel sets, and 

where in the second example m is restricted to B. 

In the latter case m is called Borel measure on the real line. 

Example: Let  [[X, S]] be a measurable space and let Y S . Then if 'S [B Y : B S]=    we have 

that [[Y, S’]] is a measurable space. 

Theorem 4.10:  

 Let {Ei} be a sequence of measurable sets. We have 

(i) If  1 2 n n

n 1

E E ...,  then E lim (E )


=

 
   =  

 
. 

(ii) 1 2 i n n

n 1

E E ...,  and (E )< , then E lim (E )


=

 
     =  

 
 

Proof: Refer    Unit III -Theorem 3.9. 

Measurable: Let f be an extended real-valued function defined on X. Then f is said to be 

measurable if   ,  x : f (x) S   . 

Example: Let [[X, S]] be a measurable space and let n

n 1

X X


=

=  where, for each n, 

n n mX S and X X  for n m.  =    Write  n nS B X : B S=   . 

Show that f is measurable with respect to [[X, S]] only if , for each n, its restriction fn to Xn is 

measurable with respect to [[Xn, Sn]], and conversely if, for each n, the functions fn are 

measurable with respect to [[Xn, Sn]] and f is defined by f(x)=fn(x) when nx X , then f is 

measurable with respect to [[X, S]]. 

Solution: For each α,    n nx : f (x) x : f (x) X =    

So fn is measurable with respect to the measurable space [[Xn, Sn]]. 

Conversely, 
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    n

n 1

x : f (x) x : f (x)


=

  =   . 

Theorem 4.11: 

 The measurability of f is equivalent to  

(i) f is measurable function 

(ii) ,[f(x) ] S    , 

(iii) ,[x : f(x) ] S     

(iv) ,[x : f(x) ] S     

Proof:  

 Let f be measurable. 

Then 
n 1

1
[x : f(x) ] [x : f(x) ]

n



=

  =   −  is measurable; 

So (i) => (ii). 

Let ,[f(x) ]    be measurable. 

Then [x : f(x) ] C[x : f(x) ]  =    

is measurable and (ii)=>(iii). 

If (iii) holds, then 

 
n 1

1
[x : f(x) ] [x : f(x) ]

n



=

  =   +  is measurable; 

So (iii)=> (iv). 

Finally, if [x : f(x) ]   is measurable,  

then its complement [x : f(x) ]   is measurable; 

so (iv)=>(i) . 

hence the theorem is proved. 

Theorem 4.12: 

If c is a real number and f,g measurable functions, then f+c, cf, f+g, g-f and fg are also 

measurable. 
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Proof:   

For each α, [x : f(x) c ] [x : f(x) c]+   =  −  , a measurable set, 

So f+c is measurable. 

If c=0, cf is measurable. [since constant functions are measurable] 

Otherwise, if c>0, 1[x : cf(x) ] [x : f(x) c ]−  =   , a measurable set. 

Similarly if c<0 can also proved. 

So cf is always measurable. 

To show that f+g is measurable, 

 x A [x : f(x) g(x) ] only if  f (x) g(x) = +    −  

that is, only if there exists a rational ri such that  i if (x) r g(x),  where r ,i 1,2,... − =  is an 

enumeration of Q. 

But then g(x)>α-ri 

and so  i ix [x : f(x) r ] [x : g(x) r ]   −  

Hence ( )i i

i 1

A B [x : f(x) r ] [x : g(x) r ]


=

 =     − , a measurable set. 

Since A clearly contains B we have A=B and so f+g is measurable. 

Then f-g=f+(-g) is also measurable. 

Finally ( ) ( )( )2 21
fg f g f g

2
= + − − . 

So it is sufficient to show that f2 is measurable whenever f is. 

If  20,  [x : f (x) ] R    =  is measurable. 

If 
20,  [x : f (x) ] [x :[x : f(x) ]f(x) ] R    =  −     , a measurable set. 

Theorem 4.13: 

 If fi is measurable, i=1,2,… then i i n n n n
1 i n1 i n

sup f ,  inf f ,  sup f ,  inf f ,  lim sup f  and lim inf f
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are also measurable. 

Proof:  

(i) Since 
n

i i
1 i n i 1

[x : supf (x) ] [x : f (x) ]
  =

  =    , 

we have i
1 i n

sup f
 

 is measurable. 

(ii) i i
1 i n 1 i n

inf f sup( f )
   

= − − , so it is measurable. 

(iii) n n

n 1

[x : sup  f (x) ] [x : f (x) ]


=

  =   , so sup fn is measurable. 

(iv) n ninf  f sup  (-f )= −  , so inf fn is measurable. 

(v) 
n

n i
i

lim sup f in (sup )f f


= , a measurable function by (iii) & (iv). 

(vi) n nlim inf f lim sup( f ) − −= , so lim inf fn is measurable. 

 

Example: The limit of a pointwise convergent sequence of measurable functions is measurable. 

Example: Let f=g a.e.(µ), where µ is a complete measure. If f is measurable, then g is also 

measurable. 

INTEGRATION WITH RESPECT TO A MEASURE 

Measurable simple function   :  A Measurable simple function   is one taking a finite number 

of non-negative values, each on a measurable set; so if 1 na ,...,a are the distinct values of  , 

 We have  
i

n

i A i i

i 1

a  where A x : (x) a
=

 =  =  = . 

Then the integral of   with respect to µ is given by  

  
n

i i

i 1

d a (A ) 
=

  =   

Definition: 

Let f be measurable,  f : X 0,→  . Then the integral of f is  

   fd sup d : f ,  is a measurable simple function   =      . 

Definition:  
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 Let E S , and let f be a measurable function  f : E 0,→  ; then the integral of f over E 

is 
E

E

fd f  d   =    . 

Theorem 4.14: Fatou’s Lemma 

Let {fn} be a sequence of measurable functions, nf : X [0, ]→  , then 

n nlim  inf  f d  lim  inf f d =   . 

Proof: Refer Theorem  3.2.3 . 

Theorem 4.15: Lebesgue’s Monotone Convergence Theorem 

Let {fn} be a sequence of measurable functions, nf : X [0, ]→  , such that nf (x)   for each x, 

and let nf limf= . Then  nfdx  lim f d=   . 

Proof: Refer Theorem  3.2.4. 

Theorem  4.16: 

Let f be a  measurable function f : X [0, ]→  . Then there exists a sequence  n  of measurable 

simple functions  such that, for each x,  n (x) f (x).    

Proof: Refer Theorem  3.2.5. 

Theorem 4.17: 

Let {fn} be a sequence of measurable functions, nf : X [0, ]→  ; then  

  n n

n 1 n 1

f d  f d
 

= =

 =    . 

Proof: Refer Theorem  3.2.6. 

 

Theorem  4.18: 

Let  [[X, S. µ]] be a measure space and f a non-negative measurable function. Then 
E

(E) fd = 

is a measure on the measurable space  [[X, S]]. If, in addition , fd  then  >0,  >0        such 

that, if A S and (A)< , then (A)< .      
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Proof: 

 The function φ is countably additive since, if {En} is a sequence of disjoint sets of S, 

  n n n

n 1n 1

E E fd E fd
 

==

 
 =   =   
 

   

By theorem 4.17, 

The other properties being obvious, φ is a measure on  [[X, S]]. 

 Write fn=min (f, n). 

Then fn is measurable, nf f  and nlim f d   fd =    by theorem 4.15. 

So if fd  then  >0,  N      such that  

  N fd f d + /2      . 

If A S and (A)< /2N    we have Nf d /2    . 

So take / 2N =   to get 

  N N

A A A

fd (f f )d f d = − +     

N(f f )d / 2 − +   . 

Definition : Integrable: 

 If f is measurable and both f d+   and f d−  are finite, then f is said to be integrable, 

and the integral of f is f d f d+ − −   . 

So f is integrable if and only if |f| is integrable. 

The notation f L(X, )   is used to indicate that f belongs to the class of functions integrable 

with respect to µ. 

The notation 
E

fd  means Ef  d  , where f L(X, )   and E in S. 

If Ef  is integrable we write f L(X, )   or f L(E) . 
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Definition: we define fd f d f d+ − =  −     provided atleast one of the integrals on the right-

hand side is finite. 

Theorem 4.19: 

Let f and g be integrable functions and let a and b be constants. Then af+bg is integrable and 

(af bg)d a fd b gd+  = +    . If f=g a.e., then fd gd =   . 

Proof: Refer Theorem  3.2.9. 

Theorem 4.20: 

Let f be integrable, then fd f d    with equality, if and only if, f 0 a.e.  or f 0 a.e.   

Proof: Refer  unit 3 second part. 

Theorem 21 : Legesgue’s  Dominated Convergence Theorem 

Let {fn} be a sequence of measurable functions such that 
nf g  where g is an integrable 

function, and lim fn=f a.e. Then f is integrable,  nlim f d   fd =   , and nlim f f d 0−  = . 

Proof: Refer  Theorem 3.2.10 and the example. 

 

Theorem 4.22: 

Let {fn} be a sequence of integrable functions such that n

n 1

 f d


=

   . Then  

n

n 1

f


=

 converges a.e., its sum f, is integrable and n

n 1

 fd f d .


=

 =    

Proof : Refer theorem 3.2.11. 

 

UNIT V 

SIGNED MEASURES AND THEIR DERIVATIVES 

SIGNED MEASURES AND THE HAHN  DECOMPOSITION 

Signed Measure: 
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  A set function ν defined on a measurable space [[X, S]] is said to be a signed measure if 

the values of ν are extended real numbers and 

(i) ν takes at most one of the values ∞, - ∞, 

(ii) ν(ᶲ)=0, 

(iii) i i i j

i 1i 1

E (E ) if  E E  for i j, 
 

==

 
 =   =   
 

 where if the left-hand side is 

infinite, the series on the right-hand side has sum   ∞  or - ∞ as the case may 

be. 

Clearly, every measure is a signed measure. 

Example 1: Show that if 
E

(E) fd =   where fd  is defined, then φ is a signed measure. 

Solution :  

 We have either  f d+    or f d−    

So (i) of Definition 1 follows. 

(ii) is trivial. 

Let {Ei} be a sequence of disjoint sets of S and for E S  

write  
E

(E) f d+ + =  , 
E

(E) f d− − =   

so by  Theorem 4.18, + and −  are measures. 

Then i i i i i i

i 1 i 1 i 1i 1 i 1 i 1

E E E (E ) (E ) (E )
     

+ − + −

= = == = =

     
 =  − =  −  =      
     

    

As we cannot get  -  . 

Positive set: 

A is a positive set with respect to the signed measure ν on [[X, S]] if A S and (E) 0   for each 

measurable subset E of A. We will omit ‘with respect to ν’ if the signed measure is obvious from 

the context. 

 Clearly φ is a positive set with respect to every signed measure. Also (A) 0   is 

necessary but not in general sufficient for A to be a positive set with respect to ν. 
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Example 2: If A is a positive set with respect to ν and if , for E S  , (E)= (E A)    , then µ is a 

measure. 

Negative set: 

 A is a negative set with respect to ν if it is a positive set with respect to – ν. 

Null set: 

 A is a null set with respect to ν, or a ν-null set, if it is both a positive and a negative set 

with respect to v. 

Equivalently, A is a ν-null set if A S and (E)=0 for all E S, E A.     

Example 3: If  A is a positive set with respect to ν, then every measurable subset of A is a 

positive set. The same holds for negative sets and null sets. 

Theorem 1: 

A countable union of sets positive with respect to a signed measure ν is a positive set. 

Proof: 

 Let {An} be a sequence of positive sets.  

Then theorem 4.2, 

We have n n

n 1 n 1

A B
 

= =

=

 

Where the sets  
nB S , 

n n n mB A  and B B  if n m.  =   

Now let n

n 1

E A


=



 

Then n

n 1

E (E B ),


=

= 

 

So n

n 1

(E) (E B ) 0,  


=

 =   

  

As 
n E B  is a positive set for each n by Example 3. 

So n

n 1

A


=  is a positive set. 
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Corollary : A countable union of negative or of null sets is , respectivey, a negative or a null set. 

Theorem 5.2: 

Let ν be a signed measure on [[X, S]]. Let E S  and ν(E)>0. Then there exists A, a set positive 

with respect to ν, such that A E  and ν(A)>0. 

Proof: 

 If E contains no set of negative ν-measure, then E is a positive set and A=E gives the 

result. 

Otherwise, 

 There exists n N  such that there exists B S,  B E and (B)<-1/n   . 

Let n1 be the smallest such integer and E1 a corresponding measurable subset of E with 

1 1(E )<-1/n . 

 

Let nk be the smallest positive  integer such that there is a measurable subset Ek of  

  
k 1

i k k

i 1

E E  with (E ) 1/ n
−

=

−   − . 

From the construction,  
21

n ...n    

and we have a corresponding sequence {Ei} of disjoint subsets of E. 

If the process stops,  at nm say, 

and   
m

i

i 1

C E E  
=

= − ,  

then C is a positive set,and ν(C)>0, 

 for ν(C)=0 would imply that 
m

i

i 1

(E) (E ) 0
=

 =   . 

So C is the desired set. 

If the process does not stop, 

 Put  k

k 1

A E E  


=

= − ; 
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We wish to show that A is a positive set. 

We have k

k 1

(E) (A) E


=

 
 =  + 

 
.  --------- (1) 

But ν cannot take both the values ∞, -∞, ν(E)>0 

and   k k

k 1k 1

E (E ) 0
 

==

 
 =   
 

 . 

So the second term on the right-hand side of (1) is finite. 

So   k

k 1

(E )


=

  − ; 

Hence k

k 1

1/ n


=

   and 

In particular k k 0,
k
lim n ,  and n 1 for k>k
→

=   say. 

So Let 
0B S,  B A and k>k .   

Then  

 
k

i

i 1

B E E  
=

 −  

So  
k

1
(B)

n 1
  −

−
by the definition of nk.-------- (2) 

But (2) holds for all k>k0, so letting k →  we have (B) 0   

And so A is a positive set. 

As before, ν(A)=0 would imply ν(E)<0, so ν(A)>0.  

Theorem 5.3:  

 Let ν be a signed measure on [[X, S]]. Then there exists a positive set A and a negative 

set B such that A B X,A B =  = . The pair A, B is said to be a Hahn decomposition of X 

with respect to ν. It is unique to the extent that if A1, B1  and A2, B2 are Hahn decompositions of 

X with respect to ν, then 
1 2A A  is a ν-null set. 

Proof: 
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 We may suppose that   on S, for otherwise we consider –ν, 

the result of the theorem for –ν implying the result for ν. 

Let λ=sup[ν (C): C a positive set], so 0  . 

Let {Ai} be a sequence of positive sets such that 
ilim (A ) =  . 

By Theorem 5.1,   

 i

i 1

A A


=

=  is a positive set, and from the definition of λ,  (A).    

But 
iA A A−   and hence is a positive set. 

So, for each i, 

 
i i i(A) (A ) (A A ) (A ) =  + −     

So 
i(A) lim (A )   =  . 

Hence (A) =  , that is, the value λ is achieved on a positive set. 

Write B=CA. 

Then if B contains a set D of positive ν-measure, 

We have 0 (D)    . 

So by Theorem 5.2, D contains a positive set E such that  0 (E)    . 

But then (A E) (A) (E)  =  +    , contradicting the definition of  λ. 

So (D) 0   and B is a negative set and A, B form a Hahn decomposition. 

 For the last part note that 
1 2 1 2A A A B− =   and hence is a positive and negative set and 

a null set. 

Similarly 
1 2A A−  is a null set, and so 

1 2A A  is null. 

The Jordan Decomposition 

Mutually singular: 

 Let ν1, ν2 be measures on [[X, S]]. Then ν1 and  ν2  are said to be mutually singular if, for 

some  
2 1A S,  (A) (CA) 0  =  = , and we write this as 

1 2 ⊥  . 
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Example 4: 

 Let µ be a measure and let the measures ν1, ν2 be given by  

  
1 2(E) (A E), (E) (B E) =    =  , 

where  (A E) 0  =  and E, A, B S.  show that 
1 2 ⊥  . 

Solution :  

  
1 2(B) (A B) 0, (CB) ( ) 0 =   =  =   = . 

Theorem 5.4: 

 Let ν be a signed measure on [[X,S]]. Then there exist measure +  and ν- on [[X,S]] such 

that + − =  −  and + − ⊥  . The measures + and − are uniquely defined by ν, and 
+ − =  −  is said to be the Jordan decomposition of ν. 

Proof: 

 Let A, B be a Hahn decomposition of X with respect to ν, and define + and − by 

  (E) (E A), (E) (E B)+ − =    =   -------- (1) 

for  E S.  

then + and −  are measures by Example 2, 

and (B) (A) 0+ − =  = . 

So + − ⊥  . 

Also,  for E S.   

 (E) (E A) (E B) (E) (E)+ − =   +  =  −  

So + − =  − . 

If we complete the proof when we show that the decomposition is unique. 

Let 1 2 =  −  be any decomposition of  ν into mutually singular measures. 

Then we have 1 2X A B,where B=CA and (B) (A) 0.=   =  =  

Let 
1 2 1D A,  then (D)= (D) (D) (D) 0   − =   , 
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So A is positive set with respect to ν. 

Similarly B is a negative set. 

For each E S , we have 
1 1(E) (E A) =    

and 
2 (E) (E B) = −   

so every such decomposition of ν is obtained from a Hahn decomposition of X,as in (1). 

So it is enough to show that if A, B are two Hahn decompositions then the measures obtained as 

in (1) as the same. 

 
' ' ' '(A A ) (A A ) (A A ) (A A )  =   +  =    

By theorem 5.3. 

For each E S , 

As 
'A A is a positive set we have 

 
' '(E (A A ) (E A) (E (A A )           

And  
' ' '(E (A A ) (E A ) (E (A A )           

But the first and last terms in each of these inequalities are the same. 

So 
1(E A) (E A )  =    and ν+ defined in (1) is unique. 

But the v-= ν+- ν is also unique. 

Here we have note that the Hahn decomposition is of the space and isnot unique whereas the 

Jordan decomposition  is of the signed measure and is unique. 

Example 5: 

 Let [[X, S, µ]] be a measure space and let  fd exist. Define ν by 

E

(E) fd ,  for E S =    . Find a Hahn decomposition with respect to ν and the Jordan 

decomposition of  ν. 

Solution: From example 1, 

  ν  is a signed measure. 
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 Let    A x : f (x) 0 ,B x : f (x) 0=  =  . 

Then A, B form a Hahn decomposition, while ν+, ν- given by 

 
E E

f d , f d+ − −+ ==    form the Jordan decomposition. 

Total Variation of a signed measure: 

 Total Variation of a signed measure ν is | ν |= ν++ν-, 

Where  ν= ν++ν- is the Jordan decomposition of ν. 

 Clearly | ν | is a measure on [[X, S]], and for each E S,  (E) (E)    . 

Definition : A signed measure  ν on [[X, S]] is σ-finite if n

n 1

X X


=

=

 

Where nX S  and  for each n, 

  n(X )  . 

 
Example 6: 

 Show that the signed measure ν is finite or σ-finite respectively if and only if , |ν| is or if 

and only if both ν+ and ν- are. 

Solution:  

 Suppose |ν|<∞. 

Then as ν+ and ν- are not both infinite we have ν+(E)<∞  and ν-(E)<∞. 

Hence |ν|<∞, 

Obviously, ν is finite if |ν| is. 

The corresponding results on σ-finiteness are an immediate consequence. 

The Radon-Nikodym Theorem 

Absolutely continuous: 

 If µ, ν are signed measures on the measurable space  [[X, S]] and ν(E)=0 whenever  

µ(E)=0, then we say that ν is absolutely continuous with respect to µ and we write   . 
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If µ, ν are signed measures on the measurable space  [[X, S]] and ν(E)=0 whenever   

|µ| (E)=0, then  ν is absolutely continuous with respect to µ and we write   . 

Example: 

 Show that the following conditions on the signed measures µ, ν on [[X, S]] are 

equivalent: 

(i)   . 

(ii)   . 

(iii) 
+   

(iv) 
−   

Solution: 

 From the definition of absolutely continuous,  

 We see that   , if and only if   . 

So we assume that 0  . 

As   | ν |=ν++ ν-, 

We see that    implies 
+  and  

so    . 

For the opposite implications, 

 Suppose that  ν =ν+- ν- with a Hahn decomposition A, B. 

Then if    and µ(E)=0 we have ( )µ E A 0 =  

so  ν+(E)=0  

similarly  ν-(E)=0. 

So |ν|(E)=0. 

Example 8 : If µ is measure, fd exists and 
E

(E) fd =  , then   . 

Theorem 5.5: Radon - Nikodym Theorem 
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If  [[X, S, µ]]  is a σ-finite measure space and ν is a σ-finite measure on S such that, then there 

exists a finite-valued non-negative measurable function f on X such that for each E S , 

E

(E) fd = 
. Also f is unique in the sense that if E

(E) gd = 
for each 

E S , then f=g a.e.(µ). 

Proof:  

  Suppose that the result has been proved for finite measures. Then in the general 

case we have  

Corollary 1: Theorem 5.5 can be extended to the case where ν is a σ-finite signed measure. 

Corollary 2 : Theorem 5.5 can be further extended to allow µ to be signed measure, where by 

E

fd
 we then mean E E

f d f d+ −−  
,provided this difference is not indeterminate. Any two such 

functions f and g are equal a.e. (|µ|).

 

Theorem 5.6:  

 Let µ be a signed measure on [[X, S]] and let ν be a finite-valued signed measure on [[X, 

S]] such that 𝜈 ≪ µ; then given ε>0 there exists δ>0 such that |ν|(E)<ε whenever |µ|(E)<δ. 

Example 9 : If µ and ν are signed measures on [[X, S]] and if ∀ ε>0, ∃ δ>0 such that whenever 

|µ|(E)<δ we have |ν|(E)<ε, then 𝜈 ≪ µ . 

 Definition 10:  

 Let µ and ν be σ-finite signed measures on [[X, S]] and suppose that 𝜈 ≪ µ. Then the 

Radon-Nikodym derivative d ν/dµ, of ν with respect to µ, is any measurable function f such that 

ν(E) = ∫ f dµ
E

 for each 𝐸 ∈ 𝑆,  where if µ is a signed measure ∫ 𝑓𝑑µ = ∫ 𝑓𝑑𝜇+ − ∫ 𝑓𝑑𝜇−. 

Theorem 5.7: 

 Lebesgue Decomposition Theorem 

 Let [[X, S, µ]] be a σ-finite measure space and ν a σ-finite measure on S. Then ν= ν0+ ν1 

where ν0,  ν1  are measures on S such that ν0 ⊥ µ  and 𝜈1 ≪ µ. This is the Lebesgue 

decomposition of the measure 𝜈 with respect to µ and it is unique. 

Bounded Linear Functionals on Lp. 

Normed Vector space: 
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 Let V be a real vector space. Then V is a normed vector space if there is a function ||x|| 

defined for each 𝑥𝜖𝑉 such that  

(i) ∀𝑥, ‖𝑥‖ ≥ 0, 

(ii) ‖𝑥‖ = 0 if and only if x=0 

(iii)  ‖𝑎𝑥‖ = |𝑎|. ||𝑥|| for any real number a and each 𝑥𝜖𝑉 , 

(iv) ‖𝑥 + 𝑦‖ = ‖𝑥‖ + ‖𝑦‖, ∀𝑥, 𝑦𝜖𝑉. 

Linear functional : 

A function G on the normal linear space V to the real numbers is a linear functional if 

∀𝑥, 𝑦𝜖𝑉 and a, 𝑏𝜖𝑅 , we have  

              G(ax+by)=aG(x)+bG(y). 

Bounded: 

 A linear functional G on the normed linear space V is bounded if ϶ K≥0 such that 

  |𝐺(𝑥)| ≥ K‖𝑥‖, ∀𝑥 𝜖 𝑉 .--------(1) 

Then the norm of G, denoted by ‖𝐺‖, is the infimum of the numbers K for which (1) holds. 

|𝐺(𝑥)| ≤ ‖𝐺‖. ‖𝑥‖ 

Then dividing by ‖𝐺‖ we see that ‖𝐺‖ = 𝑠𝑢𝑝[|𝐺(𝑥)|: ‖𝑥‖ ≤ 1] 

When dim V=0, ‖𝐺‖ = 𝑠𝑢𝑝[|𝐺(𝑥)|: ‖𝑥‖ = 1] 

 

Theorem 5.7: 

 Riesz Representation Theorem for 𝑳𝒑, 𝒑 > 1 

Let G be a bounded linear function on 𝐿𝑝(𝑋, µ). Then there exists a unique element g of  

𝐿𝑞(𝑋, µ) such that   

                   G(f)=∫ 𝑓𝑔  𝑑𝜇 for each 𝑓𝜖𝐿𝑝 

Where p,q are conjugate indices. Also 

   ‖𝐺‖ = ‖𝑔‖𝑞 . 

Theorem 5.8:  

Riesz Representation Theorem for 𝑳𝟏 
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      Let [[X, S, µ]] be a σ-finite measure space and let G be a bounded linear functional on 

𝑳𝟏(𝑿, µ). Then there exists a unique 𝑔 ∈ 𝐿∞(𝑋, µ) such that 

                𝐺(𝑓) = ∫ 𝑓𝑔 𝑑𝜇  for each 𝑓 ∈ 𝐿1(µ). 

Also, ‖𝐺‖ = ‖𝑔‖∞ 

 


