Course Material
Real Analysis
I M.Sc., Mathematics
UNIT I
Continuity and compactness

A mapping f of a set E in R* is said to be bounded if there is a real number M such the
[f(x)|<M forall xeE.
Theorem 1.1.8:

Suppose f is a continuous mapping of a compact metric spaces X into a metric space Y.

Then f(X) is compact.
Proof:

Let {V, } be an open cover of f(X).

Since f is continuous,
Theorem 1.1.5, shows that each of the sets ™ (V, ) is open.

Since X is compact,

There are finitely many indices, say ay,...,a, such that X < f™(V,, )u...uf(V,, ) ---------- (1)
Since f(f (E)) c Efor every Ec Y, (1) implies that
fX)cV,u..uV, - (2)

Hence proved.

Theorem 1.1.9:
If f is a continuous mapping of a compact metric space X into R¥, then f(X) is closed and
bounded. Thus f is bounded.
Theorem 1.1.10:
Suppose f is a continuous real function on a compact metric space D,and

M=supf(p) ,  m=inff(p) - ®

peX
Then there exist points p,q e X such that f(p)=M and f(q)=m.

Here M — the least upper bound of the set of all numbers f(p), where p ranges over X.
m-the greatest lower bound of this set of numbes.

Conclusion:

There exist points p and q in X such that f(q) <f(x) <f(p) forall xe X;

(i.e.,) fattains its maximum (at p) and its minimum (at q).

Proof:

By theorem 1.1.9,
f(X) is closed and bounded set of real numbers;
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here f(X) contains
M=sup f(X) and m = inf f(X).
[ by previous theorems, Let E be a nonempty set of real numbers which is bounded above
.Lety=sup E.
Then yeE.
Hence y e E if E is closed.]

Theorem 1.1.11:
Suppose f is continuous 1-1 mapping of a compact metric space X onto a metric space Y.
Then the inverse mapping f *defined on Y by
f1f(x)=x, xeX
is continuous mapping on Y onto X.
Proof:
Applying theorem 1.1.5 to f *in place of f, it suffices to prove that f(V) is an
open set in Y for every open set V in X.
Fix such a set V.
The complement V¢ of V is closed in X,
Hence compact. [ since closed subsets of compact sets are compact]
Hence f(V°) is a compact subset of Y. [ since theorem 1.1.8]

Sois closed in Y. [ since compact subsets of metric spaces are closed]
Since fis 1-1 and onto,
f(V) is the complement of f(V°).
Hence f(V) is open.
Uniformly Continuous
Let f be a mapping of a metric space X into a metric space Y. we say that f is
uniformly continuous on X if for every > Othere exists & > 0such that

dy (f(p).f(q))<e
For all p and g in X for which d, (p,q) <3

Differences between continuity and uniform continuity

Uniform continuity is a property of a function on a set, whereas continuity can be defined
at a single point.

A given function is uniform continuous at a certain point is meaningless.

If f is continuous on X, then it is possible to find, for each >0 and for each point p of
X, a number &> Qhaving the property specified in the definition of continuous functions. This &
depends on eand on p.

If f is however, uniformly continuous on X, then it is possible, for each >0 to find one
number & >0 which will do for all points p of X.

Every uniformly continuous function is continuous.
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Theorem 1.1.12:

Let fbe a continuous mapping of a compact metric space X into a metric space Y. Then f
is uniformly continuous on X.

Proof:

Let >0 be given.

Since f is continuous,

We can associate to each point p e X a positive number ¢(p) such that

ge X, dy(p.q)<d(p)
:dv(f<p),f<q))<§ -------- ©)

Let J(p) be the set of all g € X for which

dx(p,q)<%¢(p) --------- ()

Since p € J(p), the collection of all sets J(p) is an open cover of X;
Since X is compact, there is a finite set of points p,,....,p,in X, such that

X < d(py) U..0I(p,) - (3)
1 .
We put &= 2 min[(p).....o(P,)] —_(4)
Then 6 >0
Now let g and p be points of X,
Such that
dx(p,q)<8

By (3), there is an integerm, 1<m<n,
Such that peJ(p,,);

Hence d, (p,p,,) < %d)(pm) ------- (5)

And we have,

e (01P) < G (P.0) 40 (PP ) <5+ 8(P) < (0

Finally, (1) shows that

dy (f(p), f(a)) <d, (f(p), f(p,,)) +dy (f(@). f(p,,)) <<

This completes the proof.

Theorem 1.1.13:

Let E be a non-compact set in RY. Then

(a) There exists a continuous function on E which is not bounded.

(b) There exists a continuous and bounded function on E which has no maximum.
If, in addition, E is bounded, then

(c) There exists a continuous function of E which is not uniformly continuous.
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Proof:
Suppose first that E is bounded,
So that there exists a limit point xo of E which is not a point of E.

Consider f(x) = ! , XeE ----m--- 1)

0

This is continuous on E (theorem 1.1.6), but evidently unbounded.
To see that (1) is not uniformly continous,
Let €>0 and >0 be arbitrary, and

Choose a point x € E such that [x —X,|< 8.

Taking t close enough to Xo,
We can then make the difference [f (t)—f(x)| greater thane,

although|t—x| <3,

since this is true for every 6>0,
f is not uniformly continuous on E.

The function g given by g(x) = _ XeE -------- 2

1+(x=%,)" ’
Is continuous on E, and is bounded, since 0<g(x) <1.
It is clear that sup g(x) =1,

xeE
Whereas g(x)<1 forall xeE.
Thus g has no maximum on E.
Having proved the theorem for bounded sets E,
Let us now suppose that E is bounded,
Then f(x)=x establishes (a),

2

Whereas h(x) = X—Z XeE ------- (3)
1+Xx

Establishes (b), since
sup h(x) =1,

xeE

And h(x)<1 forall xeE.

Assertion (c) would be false if boundedness were omitted from the hypotheses.

For, let E be the set of all integers.

Then every function defined on E is uniformly continuous on E.

To see this,

We need merely take &> 1in definition uniformly continuous.

We prove this section by showing that compactness is also essential in theorem 1.1.11.
Example:

Let X be the half-open interval [0,27) on the real line, and let f be the mapping of X onto

the circle Y consisting of all points whose distance from the origin is 1, given by
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f(t) =(cost,sint), 0<t<2m ------- 1)
The continuity of the trigonometric functions cosine and sine and their periodicity
properties, f is a continuous 1-1 mapping of X onto Y.
However, the inverse mapping fails to be continuous at the point (1, 0)=f(0).
Xis not compact in this example.

Continuity and connectedness
Theorem 1.1.14:
If f is a continuous mapping of a metric space X into a metric space Y, and if E is a
connected subset of X, then f(E) is connected.
Proof:
Let us assume, on the contrary,
That f(E)=AUB,
Where A and B are nonempty separated subsets of Y.
Put G=Enf(A),
H=Enf'(B).
Then E=GuUH, and neither G nor H is empty.
Since A=A (the closure of A),
We have G c fY(A);
The latter set is closed, since f is continuous;
G cf(A)
It follows that f(G) c A.
Since f(H)=B and A~ Bis empty,
G H isempty.
The same argument show that G ~\H is empty.
Thus G and H are separated.
This is impossible if E is connected.
Theorem 1.1.15:

Let f be a continuous real function on the interval [a,b]. If f(a) < f(b) and if cis a
number such that f(a)<c<f(b), then there exists a point x € (a, b) such that f(x)=c.

Definition and Existence of the integral
Let [a, b] be a given interval,

By a partition P of [a, b] we mean a finite set of points X,,X,,..., X, , where

a=X, <X <..<X,, <X, =b

n-. n
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we write
AX; =X, =X, , 1=1,2,...n
Suppose f is a bounded real function defined on [a, b].
Corresponding to each partition P of [a, b]
We put

M, =sup f(X), X, ; <X<X;

m, =inf f(x), x, ; <X<X,

U(P.f) =Y MAx,

i=1

L(P.f)=> max,

i=1

And j).fdx:inf SR ) T — (1)

dex =sup L(P,F)  ---mme- 2

Where the inf and the sup are taken over all partitions P of [a, b].

The left members of (1) & (2) are called the upper and lower Riemann integrals of f over
[a, b] respy.

If the upper and lower integrals are equal, we say that f is Riemann-integrable on [a, b],
We write f R (R denotes the set of Riemann-integrable functions)

We denotes the common value of (1) and (2) by

[fdx -meoemme (3) (or)

This is the Riemann integral of f over [a, b].

Dr. A.Dhanalakshmi, Asst. Prof. of Mathematics, SCSVMV. Page 6



Since f is bounded, there exist two numbers, m and M such that
M<f(X)<M, a<x<h.
Hence for every P,
m(b—a) < L(P,f) <U(P,f)<M(b-a)
So that the numbers L(P, f) and U(P, f) form a bounded set.
This shows that the upper and lower integral are defined for every bounded function f.
Definition

Let o be a monotonically increasing function on [a, b]. [since a(a) and a(b) are finite, it follows
that o is bounded on [a, b] ]

Corresponding to each partition of P of [a, b],
Ao, =o(X;)— (X, )
Aa; 20
For any real function f which is bounded on [a, b].

Corresponding to each partition P of [a, b]

We put

U(P,f,a)= Zn:MiA(xi ,

i=1

L(P,f,a) = Zn: m,Aaq,

i=1

b
And we define [ fda =inf U(P,fa) -----m---- (5)
b
[fda.=sup L(Pfar) ---mmrmnm- (6)

The left members of (5) & (6) are equal,
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LR (7) (or) if(x) do(x) - 8)

we say that f is Riemann-Stieltjes integral of f with respect to o ,over [a, b],
If (5) & (6) are equal we say that f is integrable w.r.t. o, in the Riemann sense, f € R(a)
Partition:

The partition P* is called as a refinement of P if P*> P . Given two partitions, P1 and P,
we say that P* is their common refinement if P*=P, UP,

Theorem 1.2.1.:
If P* is a refinement of P,
L(P.f,a) <L(P*f,a) --------- (1)
And U(P*,f,a) <U(P,f, o) ---------- 2
Proof:
To prove (1), suppose first that P* contains one point more than P.
Let this extra point be x*,
And suppose X, ; < X*< X,
Where xi.1 and X; are two consecutive points of P,
Put wi= inf f(x) , X SXSX*
Wo=inf f(x), X*<X <X,
Clearly w, >m; and w, >m,,

Hence

L(P*,f,a) —L(P,f,0) =w, [ou(x*) —au(X; 1) |+ W, [aulX;) —ou(x*) |- m; [au(x;) —eu(X; )]

= (w,—m;) [a(X*) - OL(XH)] +(w,—m;) [(X(Xi) - OL(X*)] >0
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If P*contains k points more than P, we repeat this reasoning k times, and arrive at (1). The proof
of (2) is analogous.

Theorem 1.2.2:

Proof:
Let P* be the common refinement of two partitions P1 and P-.

By previous theorem,

L(P,f,a) < L(P*f,a) <UP*f,a) <UP,T o)
Hence L(P,f,a) <UP,,f,a)-------- Q)
If P2 is fixed and the sup is taken over all Py,

(1) Gives jf SR U1( T ) —— ()

The theorem follows by taking the inf over all P2 in (2).
Theorem 1.2.3:

f e R(a) on [a, b] if and only if for every £>0 there exists a partition P such that
U(P,f,a)—L(P,f,a)<g =---------- 1)
Proof:

For every P we have

L(P.f,0) < [f da <[ da < UPfa)

Thus (1) implies [f da—[f da<e
Hence if (1) can be satisfied for every € >0,

We have jf da:jf da , that is f e R(a).

Dr. A.Dhanalakshmi, Asst. Prof. of Mathematics, SCSVMV. Page 9



Conversely,
Suppose f e R(a),
And let € > 0be given.

Then there exist partitions P1 and P2 such that

U, fa)-[f doc<% ------ )
[t doc—L(Pl,f,oc)<% ------ (3)

We choose P to be the common refinement of P and Po.

Then theorem 1.2.1, together with (2) & (3) shows that
UP,f,a) < U(Pz,f,a)<_[f da+%< L(P,f,a)+e<L(P,f,a)<e

So that (1) holds for this partition P.
Theorem 1.2.4:

If fis monotonic on [a, b], and if a is continuous on [a, b], then f € R(a) .
Proof:
let € >0be given.

a(b) —a(a)
—

For any positive integer n, choose a partition such that Ao, = i=1,2,...,n.

This is possible since a is continuous . [ Theorem 1.1.15]
We suppose that f is monotonically increasing.
Thus M, =f(x,), m, =f(x; -1), i=1,2,...,n

So that

U(P,f, o)~ L(P,f,a0) = Mi[f(xi) —f(x,,)]

_ a(B)—a@) ;O‘(a) [f(b) —f(a)] <&
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If n is taken enough.

By theorem 1.2.3, f e R(a) .
Theorem 1.2.5:
If f is continuous on [a, b] then f e R(a) on [a, b].
Proof:
let £ >0Dbe given.

Choose n >0 so that

[a(b)—a(a)]n<e.
Since f is uniformly continuous on [a, b] [theorem 1.1.12]

There exists a 6 >0 such that
fOO-f(O|<n 1)

If xe[ab], te[ab], and [x—t/<35,

If P isany partition on [a, b] such that Ax; <& for all i, then (1) implies that
M, -m, <n, (i-1, ...,n)

And therefore,

U(P,f,a) - L(P,f,a) :Zn:(Mi -m;)Aa,

i=1

snimi —n[a(b) - a(@)] <e

By theorem 1.2.3, f e R(a) .
Theorem 1.2.6:

Suppose f is bounded on [a, b], f has only finitely many points of discontinuity on [a, b], and a

is continuous at every point at which f is discontinuous. Then f € R(a)

Proof:
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let £ >0Dbe given,
put M=sup [f(x)[,
Let E be the set of points at which f is discontinuous.

Since E is finite and a is continuous at every point of E,

We can cover E by finitely many disjoint intervals | u;,v; | [a,b] such that the sum of the

corresponding differences o(v;)—a.(u;) is less that .

We can place these intervals in such a way that every point of E m(a, b) lies in the

interior of some [uj,v; |.
Remove the segments (u;, v; ) from [a, b].

The remaining set K is compact.

Hence f'is uniformly continuous on K, and there exists 6>0 such that

f(s)-f(t) <eif seK, teK, [s—t/<35.
Now from a partition P ={X,,X,,... X, } of [a, b],
Each u; occurs in P, Each vj occurs in P.
No point of any segment (u;,v;)occurs in P.
If Xi-1 is not one of the uj, then AX; <3.

Note that M; —m; <2M for every i, and that M; —m, <eunless xi1 is one of the u;.
Hence as in the proof of theorem 1.2.5,

U(P,f,00) — L(P,f,a) <[a(b) — (@) ]e + 2Me

Since ¢ is arbitrary,

Theorem 1.2.3, shows that f R(a)

Theorem 1.2.7:
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Suppose f e R(a) on[a, b], m<f <M, ¢ is continuous on [m, M], and h(x)= ¢f(x) on [a, b].
Then f e R(a) on [a, b].

Proof:
Choose >0,

Since ¢ is uniformly continuous on [m, M],
There exists >0 such that 6<e¢ and |(p(S) —(p(t)| <g if |S —t| <d and s,te [m, M] :

Since f e R(a)
There is a partition P={x,,X;,... X, } of [a, b],

Such that U(P,f,a) —L(P,f,a) <& -----mmmmmmmemm- (1)
Let Mi, m; have the same meaning in the definition.
Let Mi*, mi* be the analogous numbers for h.
Divide the numbers 1,2,...,n into two classes:
leAif M,-m <3, ieB if M,-m, >3
For ie A, out choice of 6 shows that

M. *-m*<eg,
ForieB, M,*-m*<2k,
Where k =sup|¢(t)], m<t<M,

By (1), we have

8> Ac; <Y (M, —m)Aa,; <& --emmmemmea ()

ieB ieB

So that > Aa; <&

ieB

It follows that

U(P,h,a)-L(P,h,a) = Z(Mi *—m, *) Aa, +Z(Mi *—m, *) Aa,
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<g[a(b)—a(a)]+2ks < g[a(b) —a(a) + 2k]

Since € was arbitrary.

Theorem 1.2.3 implies that h € R(a)
Properties of the Integral
(@) If f,eR(a)and f, e R(a)on [a, b], then f, +f, e R(a),
b b b
[ (£, +1,)da =[f,da+ [ f,do
If cf e R(a)
b b
Then Icfdon =c.|'fdoc
(b) If f,(x) <f,(x)on [a, b], then

b b
[fdou <[ f,dor
(c) If f eR(a)on [a, b] and a<c<b, then f € R(a) on [a, c] and on [c, b],
c b b
and  [fdou+ [ fdou= [fda

(d) If f e R(a)on [a, b] and if [f(x)| <M on [a, b] then

<M[a(b)—a(a)]

b
Ifda

(e) If f eR(a,)and feR(a,), then f e R(a, +a,), and

Tf d(o, +a.,) :j).deL1 + j)-fzd(x2

b b
If f e%R(a)and cis a positive constant, then If d(ca) = c_[fda

Theorem 1.2.8:
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If f eR(a)and geR(a) on [a, b],

Then (a) fg € R(a)

(b) |f| e R(a) and

b
jfda

b
< [[f|dot

Proof:

If we take ¢(t) =12,

Theorem 1.2.7, shows that > € R(a) if f € R(a).

The identity
4fg = (f +9)° - (f -9)*
Completes the proof of (a).
If we take ¢(t) =|t],
Theorem 1.2.7. shows that [f| e R(a).

Choose ¢c=+1, so that

b
jfda

b b b
= ¢ fdo = [ cfdo < [[f|dot

Since cf <|f|

Unit Step function:

0, x<0

The unit step function | is defined by I(x) = .
1, x>0

Theorem 1.2.9:

If a<s<b, f is bounded onl[a, b], f is continuous at s, and a(x) = I(x —s) then,
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if do. =f (5)

Proof:

Consider partitions P ={Xy,X;,X,, X5} ,

Where Xo=a and X1=S<x><x3=b.

Then U(P.f,a)=M2, L(P.,f,a)=mp,

Since f is continuous at s, we see that M2 and m2 converge to f(s) as X, —s.
Theorem 1.2.10:

Suppose C, >0for 1,2,3,...., ch converges, {sn}is a sequence of distinct points in (a, b), and

a(x) =Y. Col(x=s,) -oeeee 1)

Let f be continuous on [a, b], then
b .
[fda=3"C,f(s,)
a n=1

Proof:

The comparison test shows that the series (1) converges for every X.

Its sum a(x) is evidently monotonic, and o(a)=0, a(b) = ZCn

Let >0 be given, and choose N so that Z C,<e

N+1

Put

0(x) = Y C I(X=5,), o, (x) = 31C I(x—s,)

N+1

By properties of integral and theorem 1.2.9,

b N
[fdo, =>"C.f(s,)
a n=1
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Since az(b)- ax(a)<e,

Where M=sup [f(x)|.
Since o= a1+ ay,

It follows from (3) & (4),

< Mg

b N
[fda-)"C.f(s,)
a n=1

If we let N — o0, we obtain (2).
Theorem 1.2.11:

Assume o increases monotonically and o € R on [a, b]. Let f be a bounded real function on [a,
b].

Then f e R(a) iff fo eN
b b
In that case j fdo = j f(X)or (X)dx

Theorem 1.2.12:

Suppose ¢ is a strictly increasing continuous function that maps an interval [A, B] on [a, b].

suppose a is monotonically increasing on [a, b] and f € R(a) on [a, b].
Define f and g on [A, B] by
BY) =a(d(y)),  a(y)=f(o(y)) - (1)

Then geR(B) and

Tg dp = [ da --meoreomeee- (2)
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To each partition P={x,,...,x, } of [a, b] corresponds a partition Q={y,,...,y,} of [A,
B],

So that x; =d(y,).

All partitions of [A, B] are obtained in this way.
Since the values taken by f on [xi.1, Xi] are exactly the same as those taken by g on [yi-1, yil,

We see that

UQ.9,8) =U(P.f,a), L(Q,9,B) =L(P.f,a) -------- @)
Since f e R(a), P can be choosen so that both U(P,f, o) and L(P,f,a) are close to If do .
Hence (3), combined with theorem 1.2.3, shows that g € R(B) and that (2) holds.

This completes the proof.

Integration and Differentiation:
Theorem 1.2.13:
Let feR(a) on [a, b].

For a<x<b,
Put F(x) = j f(t) dt.

Then F is continuous on [a, b];
Furthermore, if f is continuous at a point xo of [a, b], then F is differentiable at Xo,
And F(x,)=f(x,)
Proof:
Since f €R, fis bounded.

Suppose [f(t)|<M for a<t<b.
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If a<x<y<b then,

IF(y)—F(x)| = <M(y-x),

ff (t)dt

By the properties of the integral,

Given >0,

We see that |F(y) — F(x)| <&,

Provided that |y —x| <&/ M.

This proves continuity of F.
Now suppose f is continuous at Xo.

Given >0, choose 6>0 such that
|f(t) —f(X0)| <g
If |t—x,|<8, and a<t<b.

Hence if

X, —0<S<X,<t<X,+d and a<s<t<b,

By the properties of the integral (d),

F(t)—F(s)
T ils f(X,)

=‘%j’[f(u)—f(xo)]dx <e

S

It follows that F (x,) =f(X,).
Theorem 1.2.14: The Fundamental theorem of calculus

If f<R on [a, b] and if there is a differentiable function F on [a, b] such that F =f , then
b
[F() dx=F(b)-F(a).

Proof:
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Let €0 be given.

Choose a partition P={x,,...,x, } of [a, b]

So that U(P, f)= L(P, f)<e.

The mean value theorem furnishes points t; €[x,_;, x; |such that
F(x;)—F(x;_,) =f(t,)Ax;

Fori=1,2,...,n,

Thus
D f(t;)Ax; = F(b) - F(a)
i=1
From the known theorem, it follows that

F(b) - F(a) —jlf(x) dx| <&

Since this holds for every €>0, the proof is complete.
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UNIT 11
Definition:

Suppose {fn}, n=1,2,3,..., is a sequence of functions defined on a set E, and suppose that the
sequence of numbers {fn(x)} converges for every x  E . We can then define a function f by

fx)=limf,(x), (Xx€E). - D)

Here we say that {fn} converges on E and that f is the limit, or the limit function, of {fn}.

Some times we say that “{f,} converges to f pointwise onE” if (1) holds.
f(x) =2 f,(x), (X€E) -------- )
n=1

The function f is called the sum of the series D f .

f is continuous at a limit point x if

limf (t) = f(x)

Limit of a sequence of continuous functions is continuous.

Itim limf, (t)=lim limfn(x) --------- 3)
Example 1:
m
Form=1,2,3,...,n,n=1,2,3,...,let S, , =
Tom+n
Then for every fixed n,
limS, =1
So that limlimS =1,
N0 M—>0 " e ———— (1)
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On the other hand, for every fixed m,

limS_ . =0,
So that
limlimS_ =0,
n—oom—ow ' e (2)
Example 2:
Let fn (X) = m’ (X real, n:1’2’3’m) _______ (l)
Jn

And f(x)= Li_r,pof” (x)=0
Then f'(x) =0, and
f '(x) =/n cosnx,
So that {fn’} does not converge to f.
For instance, f.'(0) =+/n >
As n — oo, whereas 1°(0)=0.
Example 3:
f (X) =n’x(L—-x*)", (0<x<1, n=123,.) ------- (1)
For 0<x<1, we have

limf_(x) =0,

By known theorem,

Since f (0) =0,

limf, (x) =0, (<X 1) -werem )
1

jx(l—xz)”dx _ 1

0 2n+2

In spite of (2),
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n3

2n+2

1
Ifn(x)dx: —+00 85 N —> 00
0

If in (1), we replace n? by n, (2) still holds,

But we have

_L
2)

1
lim [, (x)dx = lim "
n—>oo0 n n—o 2N+ 2

Whereas

O ey

[!mfn(x)}dx=0

Thus the limit of the integral need not be equal to the integral of the limit, even if both are finite.
Uniform Convergence

A sequence of functions {f,}, n=1,2,3,..., converges uniformly on E to a function f if for every
€>0 there is an integer N such that n> N implies

|fn(X)—f(x)|£s forall xeE. ------- (1)
Every uniformly convergent sequence is point wise convergent.

The difference between the two concept:

o If {fn} converges pointwise on E, then there exists a function f such that, for every >0,
and for every x € E, there is an integer N, depending on € and on x, such that (1) holds if
n=N;

o if {fn} converges uniformly on E, it is possible, for each >0, to find one integer N which
will do forall xeE.

The series an (xX) converges uniformly on E if the sequence { Sn} of partial sums defined by

3100 =5,(9

Converges uniformly on E.

Theorem 2.1: Cauchy Criterion for Uniform Convergence
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The sequence of functions { f.} defined on E, converges uniformly on E if and only if for every
€>0 there exists an integer N such that m> N, x € E implies

[f, () = (¥)] <& -----(1)
Proof:
Suppose { fn} converges uniformly on E,

Let f be the limit function.

Then there is an integer N such that n> N, x € E implies
f,00-F00l <2,

So that
£, 00—, (9] <[f, ) —F ()| +[F () -, (¥)| < e
If Nn>N, m>N, xeE.

Conversely,

Suppose the Cauchy condition holds.

The sequence {f, (x)} converges, for every x, to a limit which we may call f(x).

Thus the sequence {f, } converges on E, to f.

Now we have to prove that convergence is uniform.
Let e>0 be given,
Choose N such that (1) holds,
Fix n, and let m —>ooin (1).
Since f_(X) > f(x) as m — o,
That implies
.00 —-f(x)|<e

Forevery n>N and every xe E,
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Which completes the proof.
Theorem 2.2:

Suppose limf, (x)=f(x), (xeE).

Put M, =sup|f, (x)-f (x|
xeE

Then f, —> f uniformly on E if and only if M, >0asn — .
Theorem 2.3:

Suppose {f,} is a sequence of functions defined on E, and

Suppose [f,(X)|<M,, (xeE, n=1,23,...).

Then an converges uniformly on E if ZMn converges.[converse is not true]
Proof: If ZMn converges, then,

For arbitrary £>0,

3£, (%)

t=n

<> M, <g, (xeE),
t=n

Provided m and n are large enough. Uniform convergence now proved from theorem 2.1.
UNIFORM CONVERGENCE AND CONTINUITY
Theorem 2.4:

Suppose f, — f uniformly on a set E in a metric space. Let x be a limit point of E, and
suppose that

limf, () =A,, (151,23,..) ----seres (1)

Then {A, } converges, and
limf (1) = IMA,, (1=1,2,3,...) ------(2)

In other words,
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limlimf, (t) = limlim, (1), (1=1,2,3,...) ----(3)

t—>X nH>w
Proof:

Let >0 be given.

By the uniform convergence of {fn} , there exists N such that n> N, m> N,t € E implies
f.0)-f, 0| <e @)
Let t — x in (4), we obtain
A, -A,|<e
For n>N,m> N, so that {An} is a Cauchy sequence and therefore converges , to A(say).
|f (t) —A| < |f(t) —f, (t)| +|fn () -A, | +|An—A.|
We first choose n such that
€
f(t)-f ()<=
foO-fo<; )

For all teE, and such that

Then for this n, we choose a neighborhood V of x such that
€
f,(H)-A,| 35
IfteVNE, t=x.
Substituting the inequalities (6) to (8) into (5),
Weseethat [f(t)-Al<e
Provided te VNE, t=X.

This is equivalent
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limf (1) = limA,

n—o

Theorem 2.5:

If {f,}is a sequence of continuous functions on E, and if f, —f uniformly on E, then f is

continuous on E.
Note:

The converse is not true; that is, a sequence of continuous functions may converge to a
continuous function, although the convergence is not uniform.

Theorem 2.6:

Suppose K is compact, and

@ {fn} is a sequence of continuous functions on K,
(b) {fn } converges pointwise to a continuous function f on K,
(c) f.(x)=f ., (x) forall xeK,n=1,2,3,...

n+1

Then f, — f uniformly on K.

Proof:

Putg, =f, —f.

Then gn is continuous,

g, — Opointwise, and g, >9,.,; .

We have to prove that g, — Ouniformly on K.
Let >0 be given.
Let Kn be the set of all xe K withg,(x)>¢.

Since gn is continuous,
K. is closed.
Hence compact. [since known theorem]

Since g, =0,.,,
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We have K, o K, ;.

Fix xeK .

Since g, (x) =0,

We see that x ¢ K, if n is sufficiently large.
Thus if xenK, .

In other words, NK is empty.

Hence Kn is empty for some N.

It follows that 0 <g,(Xx) <e forall xe K and forall n>N.

This proves the theorem.
Definition: Supremum norm

If X is a metric space, €(X) will denote the set of all complex-valued, continuous, bounded
functions with domain X.

Each f € C(x) its supremum norm
[f]=supif )].
Since f is assumed to be bounded,
[fl <o
It is obvious that |[f| =0 only if f(x)=0 for every x e X, that is only if f=0.
If h=Ff+g, then
RG] <[F e+ a0 <]f] + ol
Forall x e X;
Hence  |f +9] <[f]+[g].
If we define the distance between f e C(x) and g e C(x)to be [f—g|,

It follows that for a metric are satisfied.
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We have thus made C(x) into a metric space.

A sequence {f }converges to f with respect to the metric of C(x) if and only if f, — f
uniformly on X.

Accordingly, closed subsets of C(x) are sometimes called uniformly closed, the closure of a
set A < C(x) is called its uniform closure, and so on.

Theorem 2.7:
The above metric makes C(x) into a complete metric space.

Proof:
Let {f, } be a Cauchy sequence in C(x).

Each £>0 corresponds as N such that

if,—f,|<eifn=Nandm=N.

It follows by theorem 2.1, f is continuous.

Moreover, f is bounded, since there is an n such that

[f(x)—f,(x)| <1 forall xe X and f, is bounded.
Thus f € C(x), and since f, —f uniformly on X,

We have [f(x)—f,(x)| >0as n—>oo.

UNIFORM CONVERGENCE AND INTEGRATION

Theorem 2.8:
Let a be monotonically increasing on [a, b]. Suppose f, € R(a) on [a, b], for n=1,2.3,...
and suppose f, — f uniformly on [a, b]. Then f € R(a) on [a, b], and

b

b
jf do = lim [, da. - (1)

n—oo
a

Proof:

It suffices to prove this for real fy,
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Put &, =sup|f, (x) —f (X)| ---------- )
The supremum being taken over a<x<b.
Then f, —g, <f<f +g,,

So that the upper and lower integrals of f satisfy

(f,+e, o ------- (3)

D ey T

(f, —&, o < [fda < jfda <

D e T

Hence
0 < [ fdo— [ fdow <2, [ox(b) — a(a)]
Since ¢, - 0asn— oo (Theorem 2.2), the upper and lower integrals are equal.

Thus f e R(a).

Another application of (3) is

<g,[a(b)-oa(@)] ------ 4)

b b
[fda— [ f,do

This implies (1).
Corollary:

If f, eR(a) on[a,b] andif

F)=3f, (), (@<x<h),

The series converging uniformly on [a, b], then

D ey T

o b
fda = ZJ.fnda the series may be integrated term by term.

n=1
UNIFORM CONVERGENCE AND DIFFERENTIATION

Some stronger hypotheses are required for the assertion that f, —f if f —f .
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Theorem 2.9:

Suppose {f,} is a sequence of functions, differentiable on [a, b] and such that {f (x,)}

converges for some point Xo on [a, b]. If {fn'} converges uniformly on [a, b], then {fn}converges

uniformly on [a, b], to a function f, and

f'og=limf,(x), (@<x<b). ------r (1)

Proof:
Let £>0 be given.

Choose N such that n>N,m> N, implies
S
[f, (o) =T (%) < 5T )

And f,()-f, <=, (@<t<b)

20b-a)" 7 (3)

If we apply the mean value theorem to the function f,-fm, (3) shows that

B B |X—t|8 e
1,001,001, +F,0]< 1 =5 <2 (0

Forany x and ton [a, b], if n>N,m> N . The equality
[F, 00) =T ()] <[, () =, (00 =T, () + Ty (%o)| + [T, (o) =T (%)
Implies, by (2) & (4) that
f,00-f,(¥)|<e (a<x<bn=N,m>N),
So that {f,} converges uniformly on [a, b].
Let  fO)=limf,(x), @<x<b)

Fix a point x on [a, b] and define

f.()-f,(x) _fM)-f(x)
t-x 7

t—X

¢, (1) = o(t) = ————— - ()

For a<t<bjt=x.
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Then lime,(t) =f, (9, (1=1,23,..) - (6)

The first inequality in (4) shows that

€

|¢n (t)_d)m (t)| S Z(b—a) ’

(n>=N,m>N),

So that {¢, } converges uniformly, for t=x.

If we now apply theorem 2.4 to {¢, }, (5) & (6) show that
lim(t) = lmfnl(x);

This is the required one.

Theorem 2.10:

There exists a real continuous function on the real line which nowhere differentiable.

Proof:

And extend the definition of ¢(x) to all real x by requiring that

P(X+2) =@(X) ----mmmmmmme- (2)

Then, for all s and t,
|9(s) — (1) <[s —t] - (3

In particular, ¢ is continuous on R* .

Define

(9= 3] 0@ e 0

Since 0< ¢ <1, theorem 2.3 shows that the series (4) converges uniformly on R%.

By theorem 2.5, f is continuous on R,

Now fix a real number x and a positive integer m.
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m

PUt & =i%ﬂ4m -------- (5)

Where the sign is so chosen that no integer lies between 4™x and 4™ (x+6m).

This can be done, since 4™ [5,,|= %

4" S _)—op(4"
Define vy, = (x+ ”é) o) (6)

m

When n>m, then 4"5_, so that y, =0, when 0<n<m,
(3) implies that |y,|<4".
Since |y,,|=4",

)—f(x) |

f
It concludes that

m ‘

As m—>oo, 5, —0.

It follows that f is not differentiable at x.
EQUICONTINUOUS FAMILIES OF FUNCTIONS

We know that every bounded sequence of complex
numbers contains a convergent subsequence, and something similar is true for sequences of
functions.

Here we define two kinds of boundedness.

Uniformly bounded

Let {f,} be a sequence of functions defined on a set E.
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We say that {f } is pointwise bounded on E if the sequence {f, (x)}is bounded for every x €E,
that is, if there exists a finite-valued function ¢ defined on E such that

[£,00| <d(x), (xeE, n=123,....).
We say that {fn} is uniformly bounded on E if there exists a number M such that

f.00|<M, (xeE,n=1,23,..).

Now if {fn} is pointwise bounded on E and E; is countable subset of E, it is always possible to

find a subsequence {f,, }such that {f_ (x)} converges for every x e E,.

This can be done by the diagonal process which is used in the proof of Theorem 2.11.

Even if {fn} is a uniformly bounded sequence of continuous functions on a compact set E, there

need not exist a subsequence which converges pointwise on E.

Example 1:

Let f (x)=sinnx, (0<x<2r, n=1,23,...).

Suppose there exists a sequence {n, }such that {sinn,x} converges, for every x [0, 2x].

In that case we must have

II(im(sin nx—sinn,,,x)=0, (0<x<2n);

Hence lim (sinn,x—sinn, ,x)° =0, (0 <X < 2m) - (1)

k—o0
By Lebesgue’s theorem concerning integration of boundedly convergent sequence.
(1) Implies,
2n
; . . 2
L'ﬂ_l.(s'n NX—siNN,X) =0  ----mm-mmv (2)

But a simple calculation shows that

2n ) ) )
I(sm nXx—sinn,,x)" =2n
0
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Which contradicts (2).

Example 2:

X2

f(X)=—, (0<x<1 n=123,...).
&) x2+(1—nx)2 ( )

Then [f (x)| <1, so that {f_} is uniformly bounded on [0, 1].

Also  limf,(x)=0, (0<x<1).

But f, [lj =1 (n=1,2,3,...)
n

So that no subsequence can converge uniformly on [0, 1].

The concept which is needed in this connection is that of equicontinuity; it is given in the
following definition.

Definition: Equicontinuous

A family ¥ of complex functions f defined on a set E in a metric space X is said to be
equicontinuous on E if for every £>0 there exists a >0 such that

|f (x) —f(y)| <g
Whenever d(x,y)<d, X e E, yeE, andfe &.

Here d denotes the metric of X.
It is clear that every member of an equicontinuous family is uniformly continuous.
The sequence given in Ex:2 is not equicontinuous.

Theorem 2.11:

If {f,}is a pointwise bounded sequence of complex functions on a countable set E, then {f, }

has a subsequence {f, } such that {f ()} converges for every x eE.
Proof:

Let {x;},i=1,23,..., be the points of E, arranged in a sequence.
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Since {f, (x,)} is bounded, there exists a subsequence, which we shall denote by {flyk}such that

{f,(x,)} converges as k —oo.

Now consider sequences S,,S,,S,, ...,

We represent by the array

Syify fio figfiy e
SRAPTI PRI P PR
STH PP PP PP CPR

Which have the following properties:

(@) Snis asequence of Sy.1, forn=2,34,....
(b) {f,.(x,)} converges, as k — oo

(c) The order in which the functions appear is the same in each sequence:
(i.e.,) if one function precedes another in Si, they are in the same relation in every Sy,
until one or the other is deleted.
Hence when going from one row in the above array to the next below, functions may
move to the left but never to the right.

Now we go down the diagonal of the array.
(i.e.,) we consider the sequence
SH P AP PR R
By (c) the sequence S (except possibly its first n-1 terms) is a sub-sequence of Sy, for n=1,2,3,...

Hence (b) implies that {f, (x;)} converges, as n —oo, for every x; €E.

Theorem 2.12:

If K is compact metric space, if f, € C(K) for n=1,2,3,..., and if {f }converges uniformly on

K, then {f,}is equicontinuous on K.

Proof:

Let >0 be given.
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Since {f, } converges uniformly, there is an integer N such that

[ PP p— @

Since continuous functions are uniformly continuous on compact sets, there is a 6>0 such that
00— )] <& oreerre @
If 1<i<N and d(x,y)<3.

If n>N and d(x,y)<3,it follows that

[f, () =T, )] <[f 0~ Fy )| +[F ) T, ()] <3¢
In conjuction with (2), this proves the theorem.
Theorem 2.13:

If K is compact metric space, if f, e C(K) forn=1,2,3,..., and if {f,} is pointwise bounded and

equicontinuous on K, then

(a) {f,}is uniformly bounded on K.

(b) {fn } contains a uniformly convergent subsequence.

Proof:
(@) Let >0 be given.
Choose 6>0,

By the definition of equicontinuous,
[F,00 =, @) < =ommeere &)
For all n, provided that d(x,y)<3.
Since K is compact, there are finitely many points ps,..., prin K

Such that to every X € K corresponds at least one pi with d(X, Pi ) <39.

Since {f,}is pointwise bounded,
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There exist M; <oo such that [f, (p;)| <M, foralln.
If M= max(Ma,..., M), then

[f,()| <M+e for every xeK.

Therefore {f,}is uniformly bounded on K.

(b) Let E be a countable dense subset of K.
Theorem 2.11. shows that {f }has a subsequence {f;}such that {f_(x)} converges for

every X e K.
Putf,=g,.

Now we have to prove that {g;} converges uniformly on K.

Let >0 be given.

Choose 6>0.
Let V/(x,8) be the set of all y e Kwith d(x,y)<3.
Since E is dense in K .
And K is compact,
There are finitely many points Xi,..., Xm in E such that

K < V(X,,8) U...UV(X,,,8) ----- )

Since {g;(x)} converges for every x € K, there is an integer N such that

0 (%) =9;(x,)| <& woeeoees ©)
Whenever i >N, j>N,1<s<m.
If x e K, (2) shows that x € V(X,,3) for somes,

So that 10,(x)—0;(x,)| <

For everyi.

If i>N, j>N, it follows from (3) that

19500 =9, ()| < |a, () =9, (x,)| +]g; (x,) —9; ()| < 3¢
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Hence {fn } contains a uniformly convergent subsequence.

THE STONE-WEIRSTRASS THEOREM
Theorem 2.14:

If f is a continuous complex function on [a, b], there exists a sequence of polynomials P, such
that

limP, (x) = f(x)

uniformly on [a, b]. If f is real, the P, may be taken real.
Proof:

We assume that, without loss of generality, that [a, b]=[0, 1].
We may also assume that f(0)=f(1)=0.

For proving this theorem for this case,

Consider g(x)=f(x)-f(0)-x[f(1)-f(0)], (0<x<1).

Here g(0)=g(1)=0,

and if g can be obtained as the limit of a uniformly convergent sequence of polynomials,
it is clear that the same is true for f,

since f-g is a polynomial.

We define f(x) to be zero for x outside [0, 1].

Then f is uniformly continuous on the whole line.
PUt Q00 =0, (A", (N=123..) ~=-rer (1)

Where ¢, is chosen so that
1
[Qdx=1 (n=123.) - @
-1

We required some information about the order of magnitude of cn.

1 1
Since I(l—xz)”dx=2.[(1—x2)”dx
0

-1
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From (2), C, < Jn

The inequality (1—x2)n >1—nx? which we used above is true by considering the function
(1-x? )n ~1+nx?

Which is zero at x=0 and whose derivative is positive in (0,1).

For any 6>0, (2) implies

Q. (x) <Jn(@-8%)", (63|x|§1)1 @)

Sothat Q, —0 uniformly in §<|x|<1

Now set
1
P (X)= j f(x+1)Q, (t)dt, (0<x<1)
-1
The assumptions about f show, by a simple change of variable, that

P00= [ £(x+DQ, (e,

:jf(t)Qn(t—x)dt,

And the last integral is clearly a polynomial in x.
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Thus {P,} is a sequence of polynomial, which are real if f is real.

Given >0, Choose 6>0, such that |y—x| <d implies
€
) —f00] <

Let M= sup|f(x)|.
Using (1) & (3),
And the fact that Q,(x) >0,

We see that for 0 < x <1.

P, (¥)-f(x)|= I [f(x+1) —f(x)]Q, (t)dt
< J1.|f(x +1)—f(x)|Q, (t)dt

3 3 1
<om| Qn(t)dt+§ [ Q. (®dt+2M[Q, (t)e

s4MJH(1-82)”+§

<g
For all large enough n, which proves the theorem.

Corollary:

For every interval [-a, a] there is a sequence of real polynomials P, such that
P,(0) —0,as n —oo. The polynomials

Pn(X)=Pn*(X)= Pn*(0) (n=1,2,3,...)
Have desired properties.

Definition: An Algebra : A family ‘A’ of complex functions defined on a set E is said to be an
algebra if

(@ f+geA
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(b) fgeA
(c) cf e A, forall f €A ,geAand forall complex constants c,

If Ais closed under addition, multiplication and scalar multiplication.
If we consider algebras of real functions, in the case (iii) require for all real c.

If A has the property that f € A, whenever f e A,(n=12,3,...)and f, = f uniformly on E, then
A is said to be uniformly closed.

Let B be the set of all functions which are limits of uniformly convergent sequences of members
of A. Then B is called the uniform closure of A.

Example: The set of all polynomials is an algebra, and the Weiestrass theorem may be stated by
saying that the set of continuous functions on [a, b] is the uniform closure of the set of
polynomials on [a, b].

Theorem 2.15: Let B be the uniform closure of an algebra A of bounded functions. Then B is
uniformly closed algebra.

Proof:

If feB,and g e B,there exist uniformly convergent sequences {f,},{g, } such that
f,—>f,0,—gand f, €A, g, eA.

Since give function is bounded, it is easy to show that
f,+9,>f+g, f.9, >fg, cf, —>cf,

Where c is any constant, the convergence being uniform in each case.

Hence f +g e B, fge B, cf €B,

So that B is an algebra.

By theorem 2.14, B is (Uniformly) closed.

Definition: Separate points:

Let A be a family of functions on a set E. Then A is said to separate points on E if to every pair
of distinct points x,, X, € E there corresponds a function f € A such that f(x,) = f(x,).

If to each xe€E there corresponds a function g € A such that g(x) =0, it is say that A
vanishes at no point of E.
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Example: An example ofan algebra which does not separate points is the set of all even
polynomials, say on [-1, 1], since f(-x)=f(x) for every even function f.

Theorem 2.16: Suppose A is an algebra of function on a set E, A separates point on E, and A
vanishes at no point of E. Suppose X,, X, are distinct points of E, and c1,c. are constants (real if

A is a real algebra). Then A contains a function f such that
f(x,)=c,, f(x,)=c,.

Proof:

Let us assume A contains the functions g, h, k such that

9(xy) #9(x,), h(x,) #0, k(x;) =0

Put u=gk-g(x,)k, v=gh-g(x,)h
Then ueAveAu(x,)=Vv(,)=0u(x,)#0,v(x,) =0
Therefore L + G4

V(X)) u(x,)

Has the required properties.

Theorem 2.17: Let A be an algebra of real continuous functions on a compact set K. If A
separates points on K and if A vanishes at no point of K, then the uniform closure B of A
consists of all real continuous functions on K.

We prove this theorem into four steps:
STEP 1: If f B then |f|eB.
Proof: Let a=sup|[f(x)|, (xeK) -------- (1)

And let >0 be given.

By corollary 2.14, there exist real numbers cu,..., ¢ such that

2.y -y
i=1

<g, (A<y<a) ----—--—-- (2

Since B is an algebra, the function
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g=>Y.cf' isamember of B.

i=1
By (1) & (2), we have

9() —[f(x)] <& (xeK).
Since B is uniformly closed, this shows that |f| < B.

STEP 2: If f B and g € B, then

By max(f, g) we mean the function h is defined by

hm=¥w it 109 > g0
g(x) if f(x)<g(x)

In the same way we define min(f, g).
Proof:

It follows from the step 1 and the identities

frg [f-d
2

max(f,g) = 5

f+g [f-d
2 b

min(f,qg) = 5

By iteration, the result can of course be extended to any finite set of functions: If
f,,....T, €B, then max(f,...,f,) € B andmin(f,...,f,) € B

STEP 3: Given a real function f, continuous on K, a point x € K,and € >0, there exists a
function g, € B such that g, (x) =f(x) and

g, () >f(t)—e (teK)--mm (3)
Proof: since Ac B and A satisfies the hypotheses of theorem 2.16 so does B.

Hence for every y € K, we can find a function h, € B such that

hy()=f(x), hy(y)=F(y) ------ (4)

by the continuity of hy there exists an open set Jy, containing y, such that
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h, () >f(t)—e, (ted,) - (5)
Since K is compact, there is finite set of points y,,..., ¥, such that

Kcl, u..ul, = - (6)

Y1 Yn

Put g, =max(h,,...h, ).

By step2, g, € B, and the relations (4) to (6) show that gx has the other required properties.

STEP 4: Given a real function f, continuous on K, and £>0, there exists a function h € B such
that

|h(x) —f(x)| <g (xeK) ------- (7)
Since B is uniformly closed, this statement is equivalent to the conclusion of the theorem.
Proof:
Let us consider the function gx , for each X € K, constructed in step 3.
By the continuity of gx ,there exist open sets Vx containing x, such that

gx(t)<f(t)+81 (tEVX) -------- (8)

Since K is compact, there exists a finite set of points X,...,X,, such that

KeV, V..UV, —mmmeee- 9)
Put h =min(gx1,...,gxm).
By step 2, h € B and (3) implies

h(t) >f(t)—¢, (teK) ------- (10)

Whereas (8) & (9) imply
h(t) <f(t)+e, (teK) --—---- (11)
Finally , (7) follows from (10) & (11).

Definition : Self-adjoint:
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A is said to be self-adjoint , if for every f € A its complex conjugate f must also belongs to A.
f is defined by f(x)=f(x).
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UNIT IV

Measures and Outer Measures
RING:

A class of sets R, of some fixed space is called a ring if whenever E €R and Fe R then
E UF and E-F belong to R.

Example 1: The class of finite unions of intervals of the form [a, b) forms a ring.
6-ring:

A ring is called a o-ring if it is closed under the formation of countable unions.
Example 2:

Show that every algebra is a ring and every c-algebra a ¢-ring but that the converse is not
true.

Theorem 4.1:

There exist a smallest ring and a smallest 6-ring containing a given class of subsets of a space; it
is referred as the generated ring and the generated o-ring respectively.

Proof:

In the proof of the Theorem 3.1.7, if we replace ‘algebra’ into ‘c-algebra’ we get the proof of
this theorem.

Notation:

S(R) - o-ring S generated by the ring R

H(&R) — for the class consisting of S(R ) together with all subsets of the sets of S(R) .
Hereditary.

A class of sets with this property, namely that every subset of one of its members belongs to the
class, is said to hereditary.

H(&R) is a o-ring and is the smallest hereditary 6-ring containing R.

H(R)= H(S(R))= H(H(R))

Definition : A set function p defined on aring R is a measure if

Dr. A. Dhanalakshmi, Asst. Prof. of Mathematics, SCSVMV. Page 1



Q) M is non-negative,
(i) u(®)=0,
(i) For any sequence {An} of disjoint sets of R such that UAn e R, we have

M[OAn}iu(An)

If R is a o-ring, the condition | JA, €% is clearly redundant.

n=1
Complete:

A measure W on R is complete if whenever E€ R, FC E and FC E 5 M(E):O’ then
FeR.

o-finite:

A measure p on R is o-finite if, for every set E€ R, we have E = U E, for some
n=1

sequence {En} such that E, e R and n(E,) <o for each n.

Example : show that Lebesgue measure m defined on M, the class of measurable sets of R, is o-
finite and complete.

Outer Measure:
If R is a ring, a set function pu* defined on the class H(&R) is an outer measure if

Q) M* is non-negative,
(i) if AcB, then n*(A)<u*(B)

(i) p*(¢)=0,
(iv)  For any sequence {An} of sets of H(R),

u*[OAnjsiu*(An),

(i.e.,) p* is countably subadditive.

Example: If A,BeR and A < B then u(A) <u(B).

EXTENSION OF A MEASURE
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Theorem 4.2:

Let {Ai} be a sequence in aring T, then there is a sequence {Bi} of disjoint sets of R such that

N N
B, = A, for each i and | JA, =( B, for each N, so that

i=1 i=1

Proof:

n-1
Define {Bi} inductively by B, =A,, B, = A, —U B, for n>1.

i=1

Clearly B, eR and B, c A, for eachii.

n-1
Also, as By and | JB; are disjoint

i=1

We have B, nB,, =¢ for n>m.

k k
Finally we have B, = A, and if | JB, = JA,
i=1

i=1

That implies U(O Bij B (A"” _LKJ B‘juo B,

i=1 i=1 i=1

k k
=Av.4 UU B =Au UUAi
i=1 i1
As required.

Example: Show that H(R) :{E:E | JE,.E, € R}

n=1

Solution: It is easily checked that the right-hand side defines a class of sets which is hereditary,
contains R, and is a ¢-ring. So it contains H(R).

Butif E, eR for each n,

We have
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UJE, s()

And so each subset belong to H(R).
So it is proved.
Theorem 4.3:

If 1 is a measure on aring R and if the set function p* is defined on H(R) by

w*(E) = inf {iu(En):En eR,N=12,..E QOEH:|

A )
u* =inf [Z u(Ey):EqeR, n=1,2,..., E C U E,
n=1 n=1

Then (i) E€R, u*(E)=n(E),
(i) p* is an outer measure on H(R).

Proof:

Q) If EeR, (i) gives u*(E) <u(E).
Suppose that E € %R,
And EgUEn where E, e R,
n=1
By theorem 4.2 we may replace the sequence {Ei N E} by a sequence {Fi} of disjoint

sets of R,
Such that F c E; nE and | JF, =E.
i=1

Then by previous example, p(F) < u(E,) for each i.

S0 u(E)=u[Oﬁj=iu<ﬁ)sM(Ei)

i=1
Therefore w(E) <u*(E).
So p*(E)=p(E) .
(i) w(d)=n(¢) by (i)
the only other property of an outer measure which is not immediate, namely

countable subadditivity, is shown as m*.
{Ei} is a sequence sets in H(R) .
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From the definition of u*,for each € >0,
We can find for each i a sequence {Ei;} of sets of R such that

E, < JE;; and leu(Ei,j) <u*(E)+el2'.
J=

=

The sets Ejj form a countable class covering U E..
i=1

So H*(U Eij S ZZM(ELJ’) < ZM*(Ei) +e
i=1 i=1 j=1 i=1
But ¢ is arbitrary.

p* -Measurable:
Let u* be an outer measure on H(R). Then E € H(R) is p*-measurable if for each

AcH(R)
pu*(A) =p*(ANE)+pn*(ANCE)

Theorem 4.4 :

Let u* be an outer measure on H(R) and let S* denote the class of u*-measurable sets. Then S*
is a o-ring and p* restricted to S* is a complete measure.

Proof:

S* is closed under countable unions.
It remains to be shown that if
E,F eS* then E-F eS*.

Let A e H(R)
and we can write A as the union of the four disjoint sets
A =A- (EUF)
A, =ANEnF
A,=AN(F-E)
A, =AN(E-F)
Since F is measurable,
u*(A) =p* (AL VA, +U*(A,UA;) e 1)
[since u*(A)=pu*(ANE)+u*(ANCE)]
Replacing A in u*(A)=p*(ANE)+u*(ANCE) by A, UA,and using the fact that
E is measurable gives
HEAVA) = (A)+u*(A,) -mmmmmmmmmmmeeeoee- )
Replacing A in u*(A)=p*(ANE)+u*(ANCE) by A, UA, UA,and using the
fact that F is measurable gives
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H*(AVAUA) =p*(A) +r*(A,VA;) - 3
From (1), (2) & (3) we have

p*(A) =p*(A) +u*(AVAUA;),
Which is the condition for E-F to be measurable.

Suppose that {Ei} is a sequence of disjoint sets in S*.
Then we have

H*(UEJ = ZH*(Ei) :
i=1 i=1
So u* is a measure on the o-ring S*.
Also every set E € H(R) such that u*(E)=0 is p*-measurable,

For if AeH(R),
u*(A) <u*(ANE)+u*(AnCE)

Sp*(E)+p*(A)=p>*(A)
So E is p*-measurable,
In particular if E eS*and p*(E)=0 and F c E then it follows that FeS*.
So u* is a complete measure on S*.

Theorem 4.5: Let p* be an outer measure on H(R) defined by i on R, then S* contains S(R),
the o-ring generated by R.

Proof:

Since S* is o-ring it is sufficient to show that
RcS*.

If E€R, AcH(R),

and €>0, then by the definition of p* in theorem 3 (1) there exists a sequence {En} of sets of R
such that

AQOEn and

n=1

pE(A) o2 3 () =Y w(E, NE) + D u(E, NCE)

n=1 n=1 n=1
As UL is a measure.

So p*(A)+e>2p*(AnE)+pu*(AnCE)
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But ¢ is arbitrary so
u*(A) = pu*(ANE)+u*(AnCE)
The opposite inequality is obvious, so E € S*.
It gives the result.
Example:
Show that if u is a o-finite measure on R, then the extension . of p to S* is also o-finite.

Solution: Let E € S*.

Then by the definition of }jl there is a sequence {En} of set R such that

W(E) <Y n(E,).

But each En is, by hypothesis, the union of a sequence {Ex,,i=1,2,.... }of set R such that

W(E, ;) <o foreachnandi.

S0 m(E)< YD u(E, ),

n=l i=1l
and so E is the union of a countable collection of sets of finite ﬁ-measure.
UNIQUENESS OF THE EXTENSION:

Theorem 4.6:

The outer measure u* on H(R) defined by p on R as in Theorem 4.3, and the corresponding outer
measure defined by p on S(R) and p on S* are the same.

Proof:

We first observe that the outer measure f* defined by a measure 3 on a o-ring T satisfies, for
E e H(T)

B*(E) =inf [B(F);E = F & 3] e-remeemv (1)

This is the case since
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B*(E) = inf {iB(En);E c|JE,.E, es]

and replacing the sets En by disjoint sets F, € 3, such that F,  E_ and

o0

We get iB(En)ZiB(Fn)ZB(UFHJZB*(E)
So (1) follows.
Since H(R)=H(S(R))=H(S"),

the outer measures to be considered have the same domain of definition.

As u=p onR,

w*(E) =inf {iu(En) Ec|JE,.E, R}

n=1

> inf iﬁ(a) Ec|JF.F, eS(R)}
L n=1 n=1

—inf iﬁ(F):EgFeS(R)} by (1)

| n=1

>inf| > p(F):EcF eS*}aS S*5S(R)

| n=1

> u*(E)
So equality holds throughout and so by (1) the outer measures are equal.
Corollary: since outer measure on H(R) determines the measurable sets and their measures, the

measure and measurable sets obtained by extending, as in Theorem 4.3, pon R, ﬁ on S(R) and

;_1 on S* are the same, namely ﬁ on S*.
Theorem 4.7: If pu is a o-finite measure on a ring R, then it has a unique extension to the o-ring
S(R).
Proof: By theorem 4.3,
i on S(R) is an extension of .
Suppose that v is a measure on S(R) such that p=v on R;
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We wish to show that p=v on S(R).

If E€S(R) and e>0,3 [E,], E, eR, Ec| JE,

n=1

Such that n(E)+e> > u(E,).
n=1

But A:EOJEn

n=1
By Theorem 4.2, may be written as the union of disjoint sets Fn, F, cE,, F, €R;
We get

H(E)+2> Y h(F,) = 2 v(F,) = V(&) 2 v(E)

So p(E) = v(E)

E eS(R), n(E) < and £>0 A S E such that
Suppose that then as above there exists

w(A) < n(E)+¢ where A = 0 F., the sets F, being disjoint sets of R,

n1
So that p(A) = v(A).
S0 u(E) < u(A) = v(E) + v(A—E) .
But, by the first part,
v(A-E) < n(A-E),
Also since p(E) < o.
We have p(A-E)<ce.
S0 u(E) < v(E) +¢
Hence w(E) = v(E) if u(E) <.

As p is o-finite, for each E € S(R)

We have E c | JE,

n=1

Where, foreachn, E, eR and p(E,) <.
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Then we may write E =| JF,

n=1

Where Fy are disjoint sets of R and p(F,) <oo.

50 K(E) = 2 u(F,) = 2 v(F,) ~v(E).

COMPLETION OF A MEASURE

Theorem 4.8:

If u is a measure on a o-ring S, then the class S of sets of the form EAN for any sets E, N such
that E €S while N is contained in some set in S of zero measure, is a o-ring , and the set

function p defined by w(EAN) = u(E)is a complete measure on S.

Proof: It is convenient to have two different descriptions of the sets of S so we prove the set
theoretic identity

EAN = (E—M)U (M (EAN) - (1)
For any sets E, M, N such that M o N.
Let X e EAN, then if xe M we have
x e M (EAN),
While if xeCMwe have xeCN so xeE—-N
And hence Xxe E-M.
To get the opposite inclusion in (1),
Suppose that x belongs to the right-hand side.

If xe M (EAN), then X e EAN ;
If xeE—M we have xe E—N c EAN.
Let DeS, D=EAN, as above with N = M €S with p1(M)=0.

Then by (1), D=FUA where FnA=¢ and Fe S and A < M €S with u(M)=0,

And since for F, A disjoint we have FUA = FAA the two characterizations of the sets of S are
equivalent.
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Now if D, €S,i=12,....

Onwriting D, =F UA,

We see that | JD, €.

i1
If D,=EAN, and D, =E,AN, belongto S
We have

D,AD, = (E,AE,)A(N, AN,).
So D,AD, €S and so D, —D, =(D,uUD,)AD, €S.
So S is a o-ring.

Also D,AD, =¢ only if E,AE, = N, AN,.
Soif E,AN, =E,AN,,
We have p(E,AE,)=0
And hence p(E,) =n(E,).
So ﬁ is unambiguously defined.
Alsop is a measure; for clearly p(¢)=0,
And if {Di} is a sequence of disjoint sets of S, D, =F UA, ,say, in the notation used above,
So that K WA, =¢ foralliand j, then

n(UD,) =p(UR UUA,) = p(URAUA,) = n(UR) = Y 1(F)

= 2uFRUA)=> (D)

So ﬁ is countably additive.

Finally p is complete,

for let D= D, €S where p(D,) =0.
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so D, =E,AN, where N, cM,,E;,M, €S, WE,) =n(M,) =0,
andso D, cM,'=E, UM, €S, w(M,") =0

then D =EAN with E=p, N=D c E, UM,

andso DeS.

Example: show that the extension ;L of Theorem 4.8 is unique in the sense that if u’ is a

complete measure on a 6-ring, S o S and uw =ponSthen w =;_1 onS.
Solution: since p’ is complete it is easily seen that S 5S .

For DeS

We have as above D =FUA,

A disjoint sets with Fe S, A <M €S with u(M)=0.

So (D) = (F)+1'(A) = u(D).
We call ﬁ on S the completion of pon S.
Theorem 4.9:

The completion of a o-finite measure is o-finite.

Proof:
Let DeS.
As is theorem 4.8,

D=FUA where FeSand ]._J,(A)ZO.

So F=|JF where u(F) <o,

i=1

And hence D = AuU F is a countable union of sets of finite p-measure.
i=1

MEASURE SPACES
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Measurable Space: A pair [[X, S]] where S is a c-algebra of subsets of a space X, is called a
measurable space. The sets of S are called measurable sets.

Measure space: [[X, S, p]] is called a measure space if [[X, S]] is a measurable space and L is a
measure on S.

Example: [[R, M, m ]] and [[R, B, m]] are measure spaces, where B denotes the Borel sets, and
where in the second example m is restricted to B.

In the latter case m is called Borel measure on the real line.

Example: Let [[X, S]] be a measurable space and let Y €S. Thenif S =[BNY :B &S] we have

that [[Y, S]] is a measurable space.
Theorem 4.10:

Let {Ei} be a sequence of measurable sets. We have

() If E,CE,c.. then u[OEnjzlimu(En).

n=1

(i) E,2E, ..., and p(E,)<w, then p(ﬁEnj =limp(E,)

n=1
Proof: Refer Unit lll -Theorem 3.9.

Measurable: Let f be an extended real-valued function defined on X. Then f is said to be
measurable if Vo, [x:f(x)<a]eS.

Example: Let [[X, S]] be a measurable space and let X = an where, for each n,
n=1

X,eSand X, "X =¢forn=m. Write S, =[BNX :BeS].

Show that f is measurable with respect to [[X, S]] only if , for each n, its restriction f, to X, is
measurable with respect to [[Xn, Sn]], and conversely if, for each n, the functions f, are
measurable with respect to [[Xn, Sn]] and f is defined by f(x)=fa(x) when x € X, then f is

measurable with respect to [[X, S]].
Solution: For each o, [x:f (X)>a]=[x:f(x)>a]nX,
So fn is measurable with respect to the measurable space [[Xn, Sn]].

Conversely,
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[x:f(x)>a]:0[x:fn(x)>a].

Theorem 4.11:
The measurability of f is equivalent to

Q) f is measurable function
(i) Vao,[f(X) > a]eS,

@)  Vo,[x:fX)<a]eS
(iv) Vo,[x:fX)<a]eS

Proof:

Let f be measurable.

Then [x:f(x) > a] =[x : f(X) > a —%] is measurable;
n=1

So (i) => (ii).

Let Vo, [f(X) > o] be measurable.
Then [x:f(x) < o] = C[x: f(x) > a]
is measurable and (ii)=>(iii).

If (iii) holds, then

[X:f(X)<a]= ﬁ[x f(X) <o+ %] IS measurable;

So (iii)=> (iv).

Finally, if [x:f(x) <a] is measurable,

then its complement [x: f(x) > o] is measurable;
so (iv)=>(i) .

hence the theorem is proved.

Theorem 4.12:

If c is a real number and f,g measurable functions, then f+c, cf, f+g, g-f and fg are also
measurable.
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Proof:

For each a, [x:f(X)+c>a]=[x:f(x) >a—c] , ameasurable set,

So f+c is measurable.

If c=0, cf is measurable. [since constant functions are measurable]
Otherwise, if >0, [x:cf(x) > o] =[x : f(x) > ¢ 'a], a measurable set.
Similarly if ¢c<0 can also proved.

So cf is always measurable.

To show that f+g is measurable,

X eA=[x:f(xX)+g(x) >a]onlyif f(x)>a—-g(x)

that is, only if there exists a rational ri such that f(x) >r, >o.—g(x), where {r,i=12,...} isan

enumeration of Q.
But then g(x)>a-ri

andso X e[x:f(x)>r] N[x:g(X)>a-r]

Hence AcB= U([x fX)>r] N[x:g(x)>o- ri]), a measurable set.
i=1

Since A clearly contains B we have A=B and so f+g is measurable.

Then f-g=f+(-g) is also measurable.

Finally fg= %((f +g)" —(f —g)z).

So it is sufficient to show that f2 is measurable whenever f is.

If <0, [x:f?(X)>a]=R is measurable.

If >0, [X:F2(X)>a]=[x:[x:f(X)< —\/a]f(x) > \/a]m R, a measurable set.

Theorem 4.13:

I fi is measurable, i=1,2,... then supf;, Lnj f., supf,, inff , limsupf andliminff,

I<i<n
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are also measurable.

Proof:

Q) Since [x:supf,(x) > a] = LnJ[x f,(X)>a] ,

1<i<n i=1

we have supf, is measurable.

1<i<n

(i) inf f, =—sup(-f,), so it is measurable.

I<i<n 1<i<n

(i)  [x:sup f (x)>a]= U[x :f. (X) > a], so sup fa is measurable.
n=1

(iv) inf f =—sup (-f,) , soinf f, is measurable.
(V) lim sup f, =inf(supf,), a measurable function by (iii) & (iv).

i>n

(vi)  liminff, =-limsup(-f,), so liminf f, is measurable.

Example: The limit of a pointwise convergent sequence of measurable functions is measurable.

Example: Let f=g a.e.(), where p is a complete measure. If f is measurable, then g is also
measurable.

INTEGRATION WITH RESPECT TO A MEASURE

Measurable simple function ¢ : A Measurable simple function ¢ is one taking a finite number
of non-negative values, each on a measurable set; so if a,,...,a, are the distinct values of ¢,

We have ¢ = Zn:aixAi where A; =[x:¢(x) =a;].
i=1
Then the integral of ¢ with respect to [ is given by
Jidu=3 an(A)
Definition:
Let f be measurable, f: X —[0,o0]. Then the integral of fis
Ifdu =sup[¢du: ¢ <f,¢ is a measurable simple function] .

Definition:
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Let E €S, and let f be a measurable function f:E — [0, oo] ; then the integral of f over E

is {fdu=jf % du .

Theorem 4.14: Fatou’s Lemma

Let {fn} be a sequence of measurable functions, f,: X —[0,], then

lim inf [f,du= [lim inff du.
Proof: Refer Theorem 3.2.3.
Theorem 4.15: Lebesgue’s Monotone Convergence Theorem

Let {f.} be a sequence of measurable functions, f_ : X —[0,c0], such that f,(x) T for each x,

and let f =limf,. Then [fdx= lim [ du.

Proof: Refer Theorem 3.2.4.

Theorem 4.16:

Let f be a measurable function f : X — [0,00]. Then there exists a sequence {¢n} of measurable

simple functions such that, for each x, ¢, (x) T f(x).

Proof: Refer Theorem 3.2.5.
Theorem 4.17:

Let {f.} be a sequence of measurable functions, f,: X —[0,]; then

[3f,du= 3 [f,du.
n=1 n=1

Proof: Refer Theorem 3.2.6.

Theorem 4.18:

Let [[X, S. u]] be a measure space and f a non-negative measurable function. Then ¢(E) = Ifdp
E

is a measure on the measurable space [[X, S]]. If, in addition , Ifdu < oo then V £>0, 3 6>0 such
that, if A eS and pn(A)<3, then ¢(A)<e.
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Proof:

The function ¢ is countably additive since, if {En} is a sequence of disjoint sets of S,

(I)LCJ Enj= jxu E fdu= iijnfdu
n=1 n=1

By theorem 4.17,
The other properties being obvious, ¢ is a measure on [[X, S]].
Write fo=min (f, n).

Then fn is measurable, f. T and Iimjfndp: I fdu by theorem 4.15.
So if [fdu <o then ¥ £>0, 3 N such that

[ fdu< [fdu+er2 .
If AeSand u(A)<e/2N we have j f du<el2 .

So take 6=¢/2N to get

[fdu= [ (f —f)du+ [ fdu
A A A
sj(f—fN)dp+s/2<a.

Definition : Integrable:
If f is measurable and both If*du and '[f‘du are finite, then f is said to be integrable,

and the integral of f is _[f*dp—jf‘dp.

So fis integrable if and only if |f| is integrable.

The notation f e L(X,n) is used to indicate that f belongs to the class of functions integrable
with respect to Q.

The notation _[fdu means J.f xedu, where f e L(X,u) and Ein S.
E

If fy. is integrable we write f e L(X,u) or f e L(E).
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Definition: we define J.fdp = J'f*dp—jf*dp provided atleast one of the integrals on the right-

hand side is finite.
Theorem 4.19:

Let f and g be integrable functions and let a and b be constants. Then af+bg is integrable and
[ (af +bg)du=a[fdu+b[gdu. If f=g ae., then [fdu=[gdy.

Proof: Refer Theorem 3.2.9.

Theorem 4.20:

Let f be integrable, then deu‘ < I|f|dpwith equality, if and only if, f >0 a.e. orf <Oa.e.

Proof: Refer unit 3 second part.
Theorem 21 : Legesgue’s Dominated Convergence Theorem
Let {fn} be a sequence of measurable functions such that |fn| <g where g is an integrable

function, and lim f,=f a.e. Then f is integrable, Iimjfndp = _[ fdu, and Iim.ﬂfn —f|du=0.

Proof: Refer Theorem 3.2.10 and the example.

Theorem 4.22:

Let {f,} be a sequence of integrable functions such that Zj|fn|du <o, Then
n=1

> f, converges a.e., its sum f, is integrable and J'fdu = ijndu.

n=1 n=1

Proof : Refer theorem 3.2.11.

UNIT V
SIGNED MEASURES AND THEIR DERIVATIVES
SIGNED MEASURES AND THE HAHN DECOMPOSITION

Signed Measure:
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A set function v defined on a measurable space [[X, S]] is said to be a signed measure if
the values of v are extended real numbers and

Q) v takes at most one of the values oo, - oo,
(i) v(®)=0,
(iii) V(U Ei) =Y V(E,) if E;nE;=¢ fori=j, where if the left-hand side is
i=1 i=1
infinite, the series on the right-hand side has sum oo or - o as the case may
be.

Clearly, every measure is a signed measure.

Example 1: Show that if ¢(E) = Ifdu where Ifdp is defined, then ¢ is a signed measure.
E

Solution :

We have either [f*du<co or [fdu<oo

So (i) of Definition 1 follows.
(i) is trivial.
Let {Ei} be a sequence of disjoint sets of S and for E S

write ¢"(E)=[fdu, ¢ (E)=[fdu

so by Theorem 4.18, ¢"and ¢~ are measures.

o0

Then ¢[CJEJ=¢+(UEJ—¢-(DEJ=_§¢+(E» -S4 (E) =3 0E)
As we cannot get «-w.

Positive set:

A is a positive set with respect to the signed measure v on [[X, S]] if A eS and v(E) >0for each

measurable subset E of A. We will omit ‘with respect to v’ if the signed measure is obvious from
the context.

Clearly ¢ is a positive set with respect to every signed measure. Also v(A)>0 is

necessary but not in general sufficient for A to be a positive set with respect to v.
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Example 2: If A is a positive set with respect to v and if , for E€S , W(E)=v(ENA), then (L is a
measure.

Negative set:
A is a negative set with respect to v if it is a positive set with respect to — v.
Null set:

A is a null set with respect to v, or a v-null set, if it is both a positive and a negative set
with respect to v.

Equivalently, A is a v-null set if AeSand v(E)=0forallE€S, Ec A.

Example 3: If A is a positive set with respect to v, then every measurable subset of A is a
positive set. The same holds for negative sets and null sets.

Theorem 1:
A countable union of sets positive with respect to a signed measure v is a positive set.
Proof:

Let {An} be a sequence of positive sets.

Then theorem 4.2,

We have OAn = DBn
=1

n=1

Where the sets B, €S, B,c A, andB, "B, = ifn=m.

Now let Ec | JA,

n=1

Then E=J(ENB,),

n=1

So v(E) = JV(ENB,) 20,

n=1

As EnNB, is apositive set for each n by Example 3.

so [ JA,
n=l |s a positive set.
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Corollary : A countable union of negative or of null sets is , respectivey, a negative or a null set.
Theorem 5.2:

Let v be a signed measure on [[X, S]]. Let E €S and v(E)>0. Then there exists A, a set positive
with respect to v, such that A < E and v(A)>0.

Proof:

If E contains no set of negative v-measure, then E is a positive set and A=E gives the
result.

Otherwise,

There exists n e N such that there exists Be S, B < E and v(B)<-1/n.

Let ny be the smallest such integer and E1 a corresponding measurable subset of E with
v(E,)<-1/n,.

Let nk be the smallest positive integer such that there is a measurable subset Ex of
k-1
E-|JE, with v(E,)<-1/n,.
i=1
From the construction, n, <n, <...
and we have a corresponding sequence {Ei} of disjoint subsets of E.

If the process stops, at nm say,

and C=E—LmJEi :

i=1

then C is a positive set,and v(C)>0,

for v(C)=0 would imply that v(E)=>_v(E;)<O0.

i=1
So C is the desired set.

If the process does not stop,

Put A=E-JE, ;
k=1
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We wish to show that A is a positive set.
We have v(E) :v(A)+V(U Ekj' ......... (1)
k=1

But v cannot take both the values oo, -0, V(E)>0

and V(OEsziv(Ek) <0.

k=1

So the second term on the right-hand side of (1) is finite.

So Zv(Ek) >—00]
k=1

Hence »'1/n, <o and

k=1

In particular II(im n, =oo, and n, >1 for k>k, say.
—>®© !

So Let BeS, Bc Aand k>k,.

Then
k
BcE-JE
i=1
S0 v(B)>——1 by the definition of - (2
n —

k

But (2) holds for all k>ko, so letting k — oo we have v(B) >0

And so A is a positive set.
As before, v(A)=0 would imply v(E)<0, so v(A)>0.
Theorem 5.3:

Let v be a signed measure on [[X, S]]. Then there exists a positive set A and a negative
set B such that AuB=X,AnB=. The pair A, B is said to be a Hahn decomposition of X

with respect to v. It is unique to the extent that if A1, B1 and Az, B> are Hahn decompositions of
X with respect to v, then AAA, is a v-null set.

Proof:
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We may suppose that v<oo on S, for otherwise we consider —v,
the result of the theorem for —v implying the result for v.
Let A=sup[v (C): C a positive set], so AL >0.

Let {Ai} be a sequence of positive sets such that A =limv(A,).

By Theorem 5.1,

A= U A, is apositive set, and from the definition of A, A >v(A).

i=1
But A—A, < A and hence is a positive set.
So, for each i,

v(A)=v(A)+Vv(A-A)=>Vv(A)

So v(A)=limv(A,)=A.
Hence v(A)=A, that is, the value A is achieved on a positive set.
Write B=CA.
Then if B contains a set D of positive v-measure,
We have 0< v(D) <.
So by Theorem 5.2, D contains a positive set E such that 0 <v(E) <.
But then v(AUE) = v(A)+ v(E) > A, contradicting the definition of A.
So v(D) <0 and B is a negative set and A, B form a Hahn decomposition.

For the last part note that A, —A, =A, "B, and hence is a positive and negative set and
a null set.

Similarly A, —A, isanull set, and so AAA, is null.

The Jordan Decomposition
Mutually singular:

Let v1, v2 be measures on [[X, S]]. Then v1 and v are said to be mutually singular if, for
some A€S, v,(A)=v,(CA)=0, and we write thisas v, L v,.
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Example 4:
Let p be a measure and let the measures v, v2 be given by
Vi(E) =n(ANE),v,(E) =n(BNE),
where n(ANE)=0 and E,A,BeS. showthat v, Lv,.
Solution :
v,(B)=(AnB)=0,v,(CB)=n()=0.
Theorem 5.4:

Let v be a signed measure on [[X,S]]. Then there exist measure v and v™ on [[X,S]] such
that v=v'—v~ and v" Lv . The measures v' and v  are uniquely defined by v, and

v=v"—v is said to be the Jordan decomposition of v.

Proof:
Let A, B be a Hahn decomposition of X with respect to v, and define v-and v~ by
VI(E) =p(ENA), v (E) =(ENB) -------- 1)
for E€S.
then v*and v~ are measures by Example 2,
and v'(B)=v (A)=0.
Sov' Llv .
Also, for EeS.
v(E) =v(EnA)+Vv(ENB)=v'(E)—v (E)
Sov=v —-v.
If we complete the proof when we show that the decomposition is unique.
Let V=V1— V2 be any decomposition of v into mutually singular measures.

Then we have X=AuUB, where B=CA and Vl(B) =V, (A) =0.

Let Dc A, then v(D)=v,(D)—v,(D) = v,(D) >0,
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So A is positive set with respect to v.
Similarly B is a negative set.

For each E €S, we have v,(E)=v,(EnA)
and v, (E)=—v(ENB)

so every such decomposition of v is obtained from a Hahn decomposition of X,as in (1).

So it is enough to show that if A, B are two Hahn decompositions then the measures obtained as
in (1) as the same.

VIAUA) =v(ANA)+v(AAA) =v(ANA)
By theorem 5.3.

For each E ES,

As AYA s o positive set we have

VEN(ANA)<V(ENA)<V(ENAUA)
And VENANA)<VENA) <v(EN(AUA)
But the first and last terms in each of these inequalities are the same.

so VENA)=V(ENAY) 414 v+ defined in (1) is unique.

But the vi=v*- v is also unique.

Here we have note that the Hahn decomposition is of the space and isnot unique whereas the
Jordan decomposition is of the signed measure and is unique.

Example 5:

Let [[X, S, M]] be a measure space and let I fdp exist. Define v by
V(E)zj fdu, forEeS . Find a Hahn decomposition with respect to v and the Jordan
E

decomposition of v.
Solution: From example 1,

v is a signed measure.
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Let A=[x:f(x)>0],B=[x:f(x) <0]
Then A, B form a Hahn decomposition, while v*, v’ given by
V= If+d“'v_ = If_d“ form the Jordan decomposition.
E E

Total Variation of a signed measure:
Total Variation of a signed measure v is | v |= vi+v/,

Where v=v'+v’ is the Jordan decomposition of v.

Clearly | v | is a measure on [[X, S]], and for each EeS, |v(B) <]V(E),
Definition : A signed measure v on [[X, S]] is o-finite if X= len

Where %1 €S and for each n,

V(X)) <o

Example 6:

Show that the signed measure v is finite or o-finite respectively if and only if, |v| is or if
and only if both v" and v are.

Solution:
Suppose |v|<co.
Then as v* and v’ are not both infinite we have v*(E)<co and v (E)<co.
Hence |v|<o,
Obviously, v is finite if |v| 1s.
The corresponding results on o-finiteness are an immediate consequence.
The Radon-Nikodym Theorem
Absolutely continuous:

If u, v are signed measures on the measurable space [[X, S]] and v(E)=0 whenever
p(E)=0, then we say that v is absolutely continuous with respect to p and we write v[I .
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If u, v are signed measures on the measurable space [[X, S]] and v(E)=0 whenever
|u| (E)=0, then v is absolutely continuous with respect to u and we write vl L.
Example:

Show that the following conditions on the signed measures , v on [[X, S]] are
equivalent:

0] vl p.
(i) |V|D |p|
@iy v'0 u
(ivy, v lOup

Solution:

From the definition of absolutely continuous,
We see that v p, if and only if v |u].

So we assume that n>0.

As |vI[=v+v,

We see that |v|0 p implies v* [ pand
so vl u.

For the opposite implications,

Suppose that v =v*- v with a Hahn decomposition A, B.
Then if v(J p and p(E)=0 we have p{(ENA)=0
so v7(E)=0
similarly v'(E)=0.
So [V|(E)=0.

Example 8 : If p is measure, deu exists and v(E) = Ifdu, then v p.
E

Theorem 5.5: Radon - Nikodym Theorem
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If [[X, S, u]] is a o-finite measure space and v is a o-finite measure on S such that then there

exists a finite-valued non-negative measurable function f on X such that for each Ee S,

=t _V(E)= [ gdu E€S, then f=g a.e. (1)
E . Also fisunique in the sense that if E for each

Proof:

Suppose that the result has been proved for finite measures. Then in the general
case we have

Corollary 1: Theorem 5.5 can be extended to the case where v is a o-finite signed measure.

Corollary 2 : Theorem 5.5 can be further extended to allow p to be signed measure, where by

[ felu [frdu—[fdu
E we then mean E E ,provided this difference is not indeterminate. Any two such
functions f and g are equal a.e. (|1|).

Theorem 5.6:

Let p be a signed measure on [[X, S]] and let v be a finite-valued signed measure on [[X,
S]] such that v « p; then given £>0 there exists 3>0 such that |v|(E)<e whenever |u|(E)<d.

Example 9 : If p and v are signed measures on [[X, S]] and if V £€>0, 3 6>0 such that whenever
IL|(E)<6 we have |[v|(E)<e, thenv < .

Definition 10:

Let p and v be o-finite signed measures on [[X, S]] and suppose that v <« p. Then the
Radon-Nikodym derivative d v/du, of v with respect to p, is any measurable function f such that

v(E) = [; fduforeach E € S, where if uis a signed measure [ fdu = [ fdu* — [ fdu~.
Theorem 5.7:
Lebesgue Decomposition Theorem

Let [[X, S, u]] be a o-finite measure space and v a o-finite measure on S. Then v=vo+ v1
where vo, v1 are measures on S such that vy L p and v; « . This is the Lebesgue
decomposition of the measure v with respect to i and it is unique.

Bounded Linear Functionals on LP.

Normed Vector space:
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Let V be a real vector space. Then V is a normed vector space if there is a function ||x||
defined for each xeV such that

(i) vx [xll =0,

(i) ||x]| = 0 if and only if x=0

(iii) llax|| = |al.||x]| for any real number a and each xeV
(V) lx+yll =[xl + llyll, vx, yeV.

Linear functional :

A function G on the normal linear space V to the real numbers is a linear functional if
Vx,yeV and a, beR , we have

G(ax+by)=aG(x)+bG(y).
Bounded:
A linear functional G on the normed linear space V is bounded if 5 K>0 such that
1G] = Kllxll, Vx €V --mn=(1)
Then the norm of G, denoted by [|G||, is the infimum of the numbers K for which (1) holds.
|G| < llGII- [l
Then dividing by ||G|| we see that ||G|| = sup[|G(x)]|: ||x]| < 1]

When dim V=0, [|G]l = sup[|GCO)[: Ix]l = 1]

Theorem 5.7:
Riesz Representation Theorem for LP,p > 1

Let G be a bounded linear function on L? (X, w). Then there exists a unique element g of
L9(X, ) such that

G(f)=[ fg du for each feLP
Where p,q are conjugate indices. Also
IGI = llgllg-
Theorem 5.8:

Riesz Representation Theorem for L1
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Let [[X, S, p]] be a o-finite measure space and let G be a bounded linear functional on
L1(X, w). Then there exists a unique g € L*(X, ) such that

G(f) = [ fg du foreach f € L(p).

Also, [|G]| = llglle
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